add pdserving ocr
This commit is contained in:
parent
7e1420f243
commit
d07a223df8
|
@ -0,0 +1,71 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_det(self):
|
||||||
|
self.det_preprocess = Sequential([
|
||||||
|
ResizeByFactor(32, 960), Div(255),
|
||||||
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||||||
|
(2, 0, 1))
|
||||||
|
])
|
||||||
|
self.filter_func = FilterBoxes(10, 10)
|
||||||
|
self.post_func = DBPostProcess({
|
||||||
|
"thresh": 0.3,
|
||||||
|
"box_thresh": 0.5,
|
||||||
|
"max_candidates": 1000,
|
||||||
|
"unclip_ratio": 1.5,
|
||||||
|
"min_size": 3
|
||||||
|
})
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
self.ori_h, self.ori_w, _ = im.shape
|
||||||
|
det_img = self.det_preprocess(im)
|
||||||
|
_, self.new_h, self.new_w = det_img.shape
|
||||||
|
return {"image": det_img[np.newaxis, :].copy()}, ["concat_1.tmp_0"]
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
det_out = fetch_map["concat_1.tmp_0"]
|
||||||
|
ratio_list = [
|
||||||
|
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
|
||||||
|
]
|
||||||
|
dt_boxes_list = self.post_func(det_out, [ratio_list])
|
||||||
|
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
|
||||||
|
return {"dt_boxes": dt_boxes.tolist()}
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_det_model")
|
||||||
|
ocr_service.set_gpus("0")
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||||||
|
ocr_service.init_det()
|
||||||
|
ocr_service.run_debugger_service()
|
||||||
|
ocr_service.run_web_service()
|
|
@ -0,0 +1,72 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_det(self):
|
||||||
|
self.det_preprocess = Sequential([
|
||||||
|
ResizeByFactor(32, 960), Div(255),
|
||||||
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||||||
|
(2, 0, 1))
|
||||||
|
])
|
||||||
|
self.filter_func = FilterBoxes(10, 10)
|
||||||
|
self.post_func = DBPostProcess({
|
||||||
|
"thresh": 0.3,
|
||||||
|
"box_thresh": 0.5,
|
||||||
|
"max_candidates": 1000,
|
||||||
|
"unclip_ratio": 1.5,
|
||||||
|
"min_size": 3
|
||||||
|
})
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
self.ori_h, self.ori_w, _ = im.shape
|
||||||
|
det_img = self.det_preprocess(im)
|
||||||
|
_, self.new_h, self.new_w = det_img.shape
|
||||||
|
print(det_img)
|
||||||
|
return {"image": det_img}, ["concat_1.tmp_0"]
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
det_out = fetch_map["concat_1.tmp_0"]
|
||||||
|
ratio_list = [
|
||||||
|
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
|
||||||
|
]
|
||||||
|
dt_boxes_list = self.post_func(det_out, [ratio_list])
|
||||||
|
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
|
||||||
|
return {"dt_boxes": dt_boxes.tolist()}
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_det_model")
|
||||||
|
ocr_service.set_gpus("0")
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||||||
|
ocr_service.init_det()
|
||||||
|
ocr_service.run_rpc_service()
|
||||||
|
ocr_service.run_web_service()
|
|
@ -0,0 +1,103 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import OCRReader
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
from paddle_serving_app.local_predict import Debugger
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_det_debugger(self, det_model_config):
|
||||||
|
self.det_preprocess = Sequential([
|
||||||
|
ResizeByFactor(32, 960), Div(255),
|
||||||
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||||||
|
(2, 0, 1))
|
||||||
|
])
|
||||||
|
self.det_client = Debugger()
|
||||||
|
self.det_client.load_model_config(
|
||||||
|
det_model_config, gpu=True, profile=False)
|
||||||
|
self.ocr_reader = OCRReader()
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
ori_h, ori_w, _ = im.shape
|
||||||
|
det_img = self.det_preprocess(im)
|
||||||
|
_, new_h, new_w = det_img.shape
|
||||||
|
det_img = det_img[np.newaxis, :]
|
||||||
|
det_img = det_img.copy()
|
||||||
|
det_out = self.det_client.predict(
|
||||||
|
feed={"image": det_img}, fetch=["concat_1.tmp_0"])
|
||||||
|
filter_func = FilterBoxes(10, 10)
|
||||||
|
post_func = DBPostProcess({
|
||||||
|
"thresh": 0.3,
|
||||||
|
"box_thresh": 0.5,
|
||||||
|
"max_candidates": 1000,
|
||||||
|
"unclip_ratio": 1.5,
|
||||||
|
"min_size": 3
|
||||||
|
})
|
||||||
|
sorted_boxes = SortedBoxes()
|
||||||
|
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
|
||||||
|
dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
|
||||||
|
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
|
||||||
|
dt_boxes = sorted_boxes(dt_boxes)
|
||||||
|
get_rotate_crop_image = GetRotateCropImage()
|
||||||
|
img_list = []
|
||||||
|
max_wh_ratio = 0
|
||||||
|
for i, dtbox in enumerate(dt_boxes):
|
||||||
|
boximg = get_rotate_crop_image(im, dt_boxes[i])
|
||||||
|
img_list.append(boximg)
|
||||||
|
h, w = boximg.shape[0:2]
|
||||||
|
wh_ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||||
|
if len(img_list) == 0:
|
||||||
|
return [], []
|
||||||
|
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
|
||||||
|
max_wh_ratio).shape
|
||||||
|
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
|
||||||
|
for id, img in enumerate(img_list):
|
||||||
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
||||||
|
imgs[id] = norm_img
|
||||||
|
feed = {"image": imgs.copy()}
|
||||||
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
||||||
|
return feed, fetch
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
||||||
|
res_lst = []
|
||||||
|
for res in rec_res:
|
||||||
|
res_lst.append(res[0])
|
||||||
|
res = {"res": res_lst}
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_rec_model")
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292)
|
||||||
|
ocr_service.init_det_debugger(det_model_config="ocr_det_model")
|
||||||
|
ocr_service.run_debugger_service(gpu=True)
|
||||||
|
ocr_service.run_web_service()
|
|
@ -0,0 +1,37 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import json
|
||||||
|
import cv2
|
||||||
|
import base64
|
||||||
|
import os, sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
def cv2_to_base64(image):
|
||||||
|
#data = cv2.imencode('.jpg', image)[1]
|
||||||
|
return base64.b64encode(image).decode(
|
||||||
|
'utf8') #data.tostring()).decode('utf8')
|
||||||
|
|
||||||
|
headers = {"Content-type": "application/json"}
|
||||||
|
url = "http://127.0.0.1:9292/ocr/prediction"
|
||||||
|
test_img_dir = "../../doc/imgs/"
|
||||||
|
for img_file in os.listdir(test_img_dir):
|
||||||
|
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
|
||||||
|
image_data1 = file.read()
|
||||||
|
image = cv2_to_base64(image_data1)
|
||||||
|
data = {"feed": [{"image": image}], "fetch": ["res"]}
|
||||||
|
r = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||||
|
print(r.json())
|
|
@ -0,0 +1,99 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import OCRReader
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_det_client(self, det_port, det_client_config):
|
||||||
|
self.det_preprocess = Sequential([
|
||||||
|
ResizeByFactor(32, 960), Div(255),
|
||||||
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||||||
|
(2, 0, 1))
|
||||||
|
])
|
||||||
|
self.det_client = Client()
|
||||||
|
self.det_client.load_client_config(det_client_config)
|
||||||
|
self.det_client.connect(["127.0.0.1:{}".format(det_port)])
|
||||||
|
self.ocr_reader = OCRReader()
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
ori_h, ori_w, _ = im.shape
|
||||||
|
det_img = self.det_preprocess(im)
|
||||||
|
det_out = self.det_client.predict(
|
||||||
|
feed={"image": det_img}, fetch=["concat_1.tmp_0"])
|
||||||
|
_, new_h, new_w = det_img.shape
|
||||||
|
filter_func = FilterBoxes(10, 10)
|
||||||
|
post_func = DBPostProcess({
|
||||||
|
"thresh": 0.3,
|
||||||
|
"box_thresh": 0.5,
|
||||||
|
"max_candidates": 1000,
|
||||||
|
"unclip_ratio": 1.5,
|
||||||
|
"min_size": 3
|
||||||
|
})
|
||||||
|
sorted_boxes = SortedBoxes()
|
||||||
|
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
|
||||||
|
dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
|
||||||
|
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
|
||||||
|
dt_boxes = sorted_boxes(dt_boxes)
|
||||||
|
get_rotate_crop_image = GetRotateCropImage()
|
||||||
|
feed_list = []
|
||||||
|
img_list = []
|
||||||
|
max_wh_ratio = 0
|
||||||
|
for i, dtbox in enumerate(dt_boxes):
|
||||||
|
boximg = get_rotate_crop_image(im, dt_boxes[i])
|
||||||
|
img_list.append(boximg)
|
||||||
|
h, w = boximg.shape[0:2]
|
||||||
|
wh_ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||||
|
for img in img_list:
|
||||||
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
||||||
|
feed = {"image": norm_img}
|
||||||
|
feed_list.append(feed)
|
||||||
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
||||||
|
return feed_list, fetch
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
||||||
|
res_lst = []
|
||||||
|
for res in rec_res:
|
||||||
|
res_lst.append(res[0])
|
||||||
|
res = {"res": res_lst}
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_rec_model")
|
||||||
|
ocr_service.set_gpus("0")
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||||||
|
ocr_service.init_det_client(
|
||||||
|
det_port=9293,
|
||||||
|
det_client_config="ocr_det_client/serving_client_conf.prototxt")
|
||||||
|
ocr_service.run_rpc_service()
|
||||||
|
ocr_service.run_web_service()
|
|
@ -5,24 +5,75 @@
|
||||||
## 快速启动服务
|
## 快速启动服务
|
||||||
|
|
||||||
### 1. 准备环境
|
### 1. 准备环境
|
||||||
|
我们先安装Paddle Serving相关组件
|
||||||
|
我们推荐用户使用GPU来做Paddle Serving的OCR服务部署
|
||||||
|
|
||||||
|
**CUDA版本:9.0以上**
|
||||||
|
**CUDNN版本:7.0以上**
|
||||||
|
**操作系统版本:CentOS 6以上**
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m pip install paddle_serving_server_gpu paddle_serving_client paddle_serving_app
|
||||||
|
```
|
||||||
|
|
||||||
### 2. 模型转换
|
### 2. 模型转换
|
||||||
|
可以使用`paddle_serving_app`提供的模型,执行下列命令
|
||||||
|
```
|
||||||
|
python -m paddle_serving_app.package --get_model ocr_rec
|
||||||
|
tar -xzvf ocr_rec.tar.gz
|
||||||
|
python -m paddle_serving_app.package --get_model ocr_det
|
||||||
|
tar -xzvf ocr_det.tar.gz
|
||||||
|
```
|
||||||
|
执行上述命令会下载`db_crnn_mobile`的模型,如果想要下载规模更大的`db_crnn_server`模型,可以在下载预测模型并解压之后。参考[如何从Paddle保存的预测模型转为Paddle Serving格式可部署的模型](https://github.com/PaddlePaddle/Serving/blob/develop/doc/INFERENCE_TO_SERVING_CN.md)。
|
||||||
|
|
||||||
### 3. 启动服务
|
### 3. 启动服务
|
||||||
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
|
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
|
||||||
|
|
||||||
|版本|特点|适用场景|
|
|版本|特点|适用场景|
|
||||||
|-|-|-|
|
|-|-|-|
|
||||||
|标准版|||
|
|标准版|稳定性高,分布式部署|适用于吞吐量大,需要跨机房部署的情况|
|
||||||
|快速版|||
|
|快速版|部署方便,预测速度快|适用于对预测速度要求高,迭代速度快的场景|
|
||||||
|
|
||||||
#### 方式1. 启动标准版服务
|
#### 方式1. 启动标准版服务
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 9293 --gpu_id 0
|
||||||
|
python ocr_web_server.py
|
||||||
|
```
|
||||||
|
|
||||||
#### 方式2. 启动快速版服务
|
#### 方式2. 启动快速版服务
|
||||||
|
|
||||||
|
```
|
||||||
|
python ocr_local_server.py
|
||||||
|
```
|
||||||
|
|
||||||
## 发送预测请求
|
## 发送预测请求
|
||||||
|
|
||||||
|
```
|
||||||
|
python ocr_web_client.py
|
||||||
|
```
|
||||||
|
|
||||||
## 返回结果格式说明
|
## 返回结果格式说明
|
||||||
|
|
||||||
|
返回结果是json格式
|
||||||
|
```
|
||||||
|
{u'result': {u'res': [u'\u571f\u5730\u6574\u6cbb\u4e0e\u571f\u58e4\u4fee\u590d\u7814\u7a76\u4e2d\u5fc3', u'\u534e\u5357\u519c\u4e1a\u5927\u5b661\u7d20\u56fe']}}
|
||||||
|
```
|
||||||
|
我们也可以打印结果json串中`res`字段的每一句话
|
||||||
|
```
|
||||||
|
土地整治与土壤修复研究中心
|
||||||
|
华南农业大学1素图
|
||||||
|
```
|
||||||
|
|
||||||
## 自定义修改服务逻辑
|
## 自定义修改服务逻辑
|
||||||
|
|
||||||
|
在`ocr_web_server.py`或是`ocr_debugger_server.py`当中的`preprocess`函数里面做了检测服务和识别服务的前处理,·`postprocess`函数里面做了识别的后处理服务,可以在相应的函数中做修改。调用了`paddle_serving_app`库提供的常见CV模型的前处理/后处理库。
|
||||||
|
|
||||||
|
如果想要单独启动Paddle Serving的检测服务和识别服务,参见下列表格, 执行对应的脚本即可。
|
||||||
|
|
||||||
|
| 模型 | 标准版 | 快速版 |
|
||||||
|
| ---- | ----------------- | ------------------- |
|
||||||
|
| 检测 | det_web_server.py | det_local_server.py |
|
||||||
|
| 识别 | rec_web_server.py | rec_local_server.py |
|
||||||
|
|
||||||
|
更多信息参见[Paddle Serving](https://github.com/PaddlePaddle/Serving)
|
||||||
|
|
|
@ -0,0 +1,72 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import OCRReader
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_rec(self):
|
||||||
|
self.ocr_reader = OCRReader()
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
img_list = []
|
||||||
|
for feed_data in feed:
|
||||||
|
data = base64.b64decode(feed_data["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
img_list.append(im)
|
||||||
|
max_wh_ratio = 0
|
||||||
|
for i, boximg in enumerate(img_list):
|
||||||
|
h, w = boximg.shape[0:2]
|
||||||
|
wh_ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||||
|
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
|
||||||
|
max_wh_ratio).shape
|
||||||
|
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
|
||||||
|
for i, img in enumerate(img_list):
|
||||||
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
||||||
|
imgs[i] = norm_img
|
||||||
|
feed = {"image": imgs.copy()}
|
||||||
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
||||||
|
return feed, fetch
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
||||||
|
res_lst = []
|
||||||
|
for res in rec_res:
|
||||||
|
res_lst.append(res[0])
|
||||||
|
res = {"res": res_lst}
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_rec_model")
|
||||||
|
ocr_service.set_gpus("0")
|
||||||
|
ocr_service.init_rec()
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||||||
|
ocr_service.run_debugger_service()
|
||||||
|
ocr_service.run_web_service()
|
|
@ -0,0 +1,71 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import OCRReader
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from paddle_serving_client import Client
|
||||||
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
||||||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
||||||
|
from paddle_serving_server_gpu.web_service import WebService
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import base64
|
||||||
|
|
||||||
|
|
||||||
|
class OCRService(WebService):
|
||||||
|
def init_rec(self):
|
||||||
|
self.ocr_reader = OCRReader()
|
||||||
|
|
||||||
|
def preprocess(self, feed=[], fetch=[]):
|
||||||
|
# TODO: to handle batch rec images
|
||||||
|
img_list = []
|
||||||
|
for feed_data in feed:
|
||||||
|
data = base64.b64decode(feed_data["image"].encode('utf8'))
|
||||||
|
data = np.fromstring(data, np.uint8)
|
||||||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||||
|
img_list.append(im)
|
||||||
|
feed_list = []
|
||||||
|
max_wh_ratio = 0
|
||||||
|
for i, boximg in enumerate(img_list):
|
||||||
|
h, w = boximg.shape[0:2]
|
||||||
|
wh_ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||||
|
for img in img_list:
|
||||||
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
||||||
|
feed = {"image": norm_img}
|
||||||
|
feed_list.append(feed)
|
||||||
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
||||||
|
return feed_list, fetch
|
||||||
|
|
||||||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||||||
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
||||||
|
res_lst = []
|
||||||
|
for res in rec_res:
|
||||||
|
res_lst.append(res[0])
|
||||||
|
res = {"res": res_lst}
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
ocr_service = OCRService(name="ocr")
|
||||||
|
ocr_service.load_model_config("ocr_rec_model")
|
||||||
|
ocr_service.set_gpus("0")
|
||||||
|
ocr_service.init_rec()
|
||||||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||||||
|
ocr_service.run_rpc_service()
|
||||||
|
ocr_service.run_web_service()
|
Loading…
Reference in New Issue