commit
d64a4c3f6d
|
@ -108,9 +108,11 @@ void DBDetector::Run(cv::Mat &img,
|
|||
const double maxvalue = 255;
|
||||
cv::Mat bit_map;
|
||||
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
|
||||
|
||||
cv::Mat dilation_map;
|
||||
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2,2));
|
||||
cv::dilate(bit_map, dilation_map, dila_ele);
|
||||
boxes = post_processor_.BoxesFromBitmap(
|
||||
pred_map, bit_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_);
|
||||
pred_map, dilation_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_);
|
||||
|
||||
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
|
||||
|
||||
|
|
|
@ -294,7 +294,7 @@ PostProcessor::FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
|
|||
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
|
||||
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
||||
if (rect_width <= 10 || rect_height <= 10)
|
||||
if (rect_width <= 4 || rect_height <= 4)
|
||||
continue;
|
||||
root_points.push_back(boxes[n]);
|
||||
}
|
||||
|
|
|
@ -10,7 +10,7 @@ use_zero_copy_run 1
|
|||
max_side_len 960
|
||||
det_db_thresh 0.3
|
||||
det_db_box_thresh 0.5
|
||||
det_db_unclip_ratio 2.0
|
||||
det_db_unclip_ratio 1.6
|
||||
det_model_dir ./inference/det_db
|
||||
|
||||
# cls config
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
max_side_len 960
|
||||
det_db_thresh 0.3
|
||||
det_db_box_thresh 0.5
|
||||
det_db_unclip_ratio 2.0
|
||||
det_db_unclip_ratio 1.6
|
|
@ -293,7 +293,7 @@ FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
|
|||
rect_height =
|
||||
static_cast<int>(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
||||
if (rect_width <= 10 || rect_height <= 10)
|
||||
if (rect_width <= 4 || rect_height <= 4)
|
||||
continue;
|
||||
root_points.push_back(boxes[n]);
|
||||
}
|
||||
|
|
|
@ -289,8 +289,10 @@ RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
|
|||
const double maxvalue = 255;
|
||||
cv::Mat bit_map;
|
||||
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
|
||||
|
||||
auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
|
||||
cv::Mat dilation_map;
|
||||
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2,2));
|
||||
cv::dilate(bit_map, dilation_map, dila_ele);
|
||||
auto boxes = BoxesFromBitmap(pred_map, dilation_map, Config);
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> filter_boxes =
|
||||
FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
|
||||
|
|
|
@ -37,6 +37,7 @@ class DBPostProcess(object):
|
|||
self.max_candidates = params['max_candidates']
|
||||
self.unclip_ratio = params['unclip_ratio']
|
||||
self.min_size = 3
|
||||
self.dilation_kernel = np.array([[1, 1], [1, 1]])
|
||||
|
||||
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
||||
'''
|
||||
|
@ -140,8 +141,9 @@ class DBPostProcess(object):
|
|||
boxes_batch = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
height, width = pred.shape[-2:]
|
||||
tmp_boxes, tmp_scores = self.boxes_from_bitmap(
|
||||
pred[batch_index], segmentation[batch_index], width, height)
|
||||
|
||||
mask = cv2.dilate(np.array(segmentation[batch_index]).astype(np.uint8), self.dilation_kernel)
|
||||
tmp_boxes, tmp_scores = self.boxes_from_bitmap(pred[batch_index], mask, width, height)
|
||||
|
||||
boxes = []
|
||||
for k in range(len(tmp_boxes)):
|
||||
|
|
|
@ -47,7 +47,7 @@ def parse_args():
|
|||
# DB parmas
|
||||
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
||||
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
|
||||
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
|
||||
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
|
||||
|
||||
# EAST parmas
|
||||
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
||||
|
@ -64,7 +64,7 @@ def parse_args():
|
|||
parser.add_argument("--rec_model_dir", type=str)
|
||||
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
||||
parser.add_argument("--rec_char_type", type=str, default='ch')
|
||||
parser.add_argument("--rec_batch_num", type=int, default=30)
|
||||
parser.add_argument("--rec_batch_num", type=int, default=6)
|
||||
parser.add_argument("--max_text_length", type=int, default=25)
|
||||
parser.add_argument(
|
||||
"--rec_char_dict_path",
|
||||
|
|
Loading…
Reference in New Issue