commit
dc6e724efb
|
@ -19,6 +19,7 @@ from __future__ import print_function
|
|||
import paddle
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
__all__ = ["ResNet"]
|
||||
|
||||
|
@ -37,9 +38,9 @@ class ConvBNLayer(nn.Layer):
|
|||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = nn.AvgPool2d(
|
||||
self._pool2d_avg = nn.AvgPool2D(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
self._conv = nn.Conv2d(
|
||||
self._conv = nn.Conv2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
|
@ -118,7 +119,8 @@ class BottleneckBlock(nn.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||
y = paddle.add(x=short, y=conv2)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
|
@ -165,7 +167,8 @@ class BasicBlock(nn.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||
y = paddle.add(x=short, y=conv1)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
|
@ -214,7 +217,7 @@ class ResNet(nn.Layer):
|
|||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_3")
|
||||
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.stages = []
|
||||
self.out_channels = []
|
||||
|
|
|
@ -19,6 +19,7 @@ from __future__ import print_function
|
|||
import paddle
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
__all__ = ["ResNet"]
|
||||
|
||||
|
@ -37,9 +38,9 @@ class ConvBNLayer(nn.Layer):
|
|||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = nn.AvgPool2d(
|
||||
self._pool2d_avg = nn.AvgPool2D(
|
||||
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
|
||||
self._conv = nn.Conv2d(
|
||||
self._conv = nn.Conv2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
|
@ -119,7 +120,8 @@ class BottleneckBlock(nn.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||
y = paddle.add(x=short, y=conv2)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
|
@ -166,7 +168,8 @@ class BasicBlock(nn.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||
y = paddle.add(x=short, y=conv1)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
|
@ -215,7 +218,7 @@ class ResNet(nn.Layer):
|
|||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_3")
|
||||
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.block_list = []
|
||||
if layers >= 50:
|
||||
|
@ -270,7 +273,7 @@ class ResNet(nn.Layer):
|
|||
shortcut = True
|
||||
self.block_list.append(basic_block)
|
||||
self.out_channels = num_filters[block]
|
||||
self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv1_1(inputs)
|
||||
|
|
|
@ -18,6 +18,7 @@ from __future__ import print_function
|
|||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import paddle
|
||||
from shapely.geometry import Polygon
|
||||
import pyclipper
|
||||
|
||||
|
@ -130,7 +131,9 @@ class DBPostProcess(object):
|
|||
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
||||
|
||||
def __call__(self, pred, shape_list):
|
||||
pred = pred.numpy()[:, 0, :, :]
|
||||
if isinstance(pred, paddle.Tensor):
|
||||
pred = pred.numpy()
|
||||
pred = pred[:, 0, :, :]
|
||||
segmentation = pred > self.thresh
|
||||
|
||||
boxes_batch = []
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import cv2
|
||||
import paddle
|
||||
import numpy as np
|
||||
import pyclipper
|
||||
from shapely.geometry import Polygon
|
||||
|
@ -23,7 +24,9 @@ class DBPostProcess():
|
|||
pred:
|
||||
binary: text region segmentation map, with shape (N, 1,H, W)
|
||||
'''
|
||||
pred = pred.numpy()[:, 0, :, :]
|
||||
if isinstance(pred, paddle.Tensor):
|
||||
pred = pred.numpy()
|
||||
pred = pred[:, 0, :, :]
|
||||
segmentation = self.binarize(pred)
|
||||
batch_out = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
|
|
|
@ -100,9 +100,10 @@ class CTCLabelDecode(BaseRecLabelDecode):
|
|||
character_type, use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
if isinstance(preds, paddle.Tensor):
|
||||
preds = preds.numpy()
|
||||
# out = self.decode_preds(preds)
|
||||
|
||||
preds = F.softmax(preds, axis=2).numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob)
|
||||
|
@ -116,19 +117,18 @@ class CTCLabelDecode(BaseRecLabelDecode):
|
|||
return dict_character
|
||||
|
||||
def decode_preds(self, preds):
|
||||
probs = F.softmax(preds, axis=2).numpy()
|
||||
probs_ind = np.argmax(probs, axis=2)
|
||||
probs_ind = np.argmax(preds, axis=2)
|
||||
|
||||
B, N, _ = preds.shape
|
||||
l = np.ones(B).astype(np.int64) * N
|
||||
length = paddle.to_variable(l)
|
||||
length = paddle.to_tensor(l)
|
||||
out = paddle.fluid.layers.ctc_greedy_decoder(preds, 0, length)
|
||||
batch_res = [
|
||||
x[:idx[0]] for x, idx in zip(out[0].numpy(), out[1].numpy())
|
||||
]
|
||||
|
||||
result_list = []
|
||||
for sample_idx, ind, prob in zip(batch_res, probs_ind, probs):
|
||||
for sample_idx, ind, prob in zip(batch_res, probs_ind, preds):
|
||||
char_list = [self.character[idx] for idx in sample_idx]
|
||||
valid_ind = np.where(ind != 0)[0]
|
||||
if len(valid_ind) == 0:
|
||||
|
|
|
@ -68,11 +68,11 @@ def load_dygraph_pretrain(model, logger, path=None, load_static_weights=False):
|
|||
param_state_dict[key] = pre_state_dict[weight_name]
|
||||
else:
|
||||
param_state_dict[key] = model_dict[key]
|
||||
model.set_dict(param_state_dict)
|
||||
model.set_state_dict(param_state_dict)
|
||||
return
|
||||
|
||||
param_state_dict, optim_state_dict = paddle.load(path)
|
||||
model.set_dict(param_state_dict)
|
||||
param_state_dict = paddle.load(path + '.pdparams')
|
||||
model.set_state_dict(param_state_dict)
|
||||
return
|
||||
|
||||
|
||||
|
@ -91,7 +91,7 @@ def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
|
|||
"Given dir {}.pdopt not exist.".format(checkpoints)
|
||||
para_dict = paddle.load(checkpoints + '.pdparams')
|
||||
opti_dict = paddle.load(checkpoints + '.pdopt')
|
||||
model.set_dict(para_dict)
|
||||
model.set_state_dict(para_dict)
|
||||
if optimizer is not None:
|
||||
optimizer.set_state_dict(opti_dict)
|
||||
|
||||
|
|
|
@ -12,6 +12,13 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
||||
|
||||
import argparse
|
||||
|
||||
import paddle
|
||||
|
@ -20,14 +27,11 @@ from paddle.jit import to_static
|
|||
from ppocr.modeling.architectures import build_model
|
||||
from ppocr.postprocess import build_post_process
|
||||
from ppocr.utils.save_load import init_model
|
||||
from ppocr.utils.logging import get_logger
|
||||
from tools.program import load_config
|
||||
from tools.program import merge_config
|
||||
|
||||
|
||||
def parse_args():
|
||||
def str2bool(v):
|
||||
return v.lower() in ("true", "t", "1")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-c", "--config", help="configuration file to use")
|
||||
parser.add_argument(
|
||||
|
@ -43,7 +47,7 @@ class Model(paddle.nn.Layer):
|
|||
# Please modify the 'shape' according to actual needs
|
||||
@to_static(input_spec=[
|
||||
paddle.static.InputSpec(
|
||||
shape=[None, 3, 32, None], dtype='float32')
|
||||
shape=[None, 3, 640, 640], dtype='float32')
|
||||
])
|
||||
def forward(self, inputs):
|
||||
x = self.pre_model(inputs)
|
||||
|
@ -53,14 +57,13 @@ class Model(paddle.nn.Layer):
|
|||
def main():
|
||||
FLAGS = parse_args()
|
||||
config = load_config(FLAGS.config)
|
||||
merge_config(FLAGS.opt)
|
||||
|
||||
logger = get_logger()
|
||||
# build post process
|
||||
post_process_class = build_post_process(config['PostProcess'],
|
||||
config['Global'])
|
||||
|
||||
# build model
|
||||
#for rec algorithm
|
||||
# for rec algorithm
|
||||
if hasattr(post_process_class, 'character'):
|
||||
char_num = len(getattr(post_process_class, 'character'))
|
||||
config['Architecture']["Head"]['out_channels'] = char_num
|
||||
|
@ -69,7 +72,10 @@ def main():
|
|||
model.eval()
|
||||
|
||||
model = Model(model)
|
||||
paddle.jit.save(model, FLAGS.output_path)
|
||||
save_path = '{}/{}'.format(FLAGS.output_path,
|
||||
config['Architecture']['model_type'])
|
||||
paddle.jit.save(model, save_path)
|
||||
logger.info('inference model is saved to {}'.format(save_path))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -22,7 +22,6 @@ import cv2
|
|||
import numpy as np
|
||||
import time
|
||||
import sys
|
||||
|
||||
import paddle
|
||||
|
||||
import tools.infer.utility as utility
|
||||
|
@ -39,7 +38,7 @@ class TextDetector(object):
|
|||
postprocess_params = {}
|
||||
if self.det_algorithm == "DB":
|
||||
pre_process_list = [{
|
||||
'ResizeForTest': {
|
||||
'DetResizeForTest': {
|
||||
'limit_side_len': args.det_limit_side_len,
|
||||
'limit_type': args.det_limit_type
|
||||
}
|
||||
|
@ -53,7 +52,7 @@ class TextDetector(object):
|
|||
}, {
|
||||
'ToCHWImage': None
|
||||
}, {
|
||||
'keepKeys': {
|
||||
'KeepKeys': {
|
||||
'keep_keys': ['image', 'shape']
|
||||
}
|
||||
}]
|
||||
|
@ -68,8 +67,9 @@ class TextDetector(object):
|
|||
|
||||
self.preprocess_op = create_operators(pre_process_list)
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor = paddle.jit.load(args.det_model_dir)
|
||||
self.predictor.eval()
|
||||
self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
|
||||
args, 'det', logger) # paddle.jit.load(args.det_model_dir)
|
||||
# self.predictor.eval()
|
||||
|
||||
def order_points_clockwise(self, pts):
|
||||
"""
|
||||
|
@ -133,11 +133,23 @@ class TextDetector(object):
|
|||
return None, 0
|
||||
img = np.expand_dims(img, axis=0)
|
||||
shape_list = np.expand_dims(shape_list, axis=0)
|
||||
img = img.copy()
|
||||
starttime = time.time()
|
||||
|
||||
preds = self.predictor(img)
|
||||
post_result = self.postprocess_op(preds, shape_list)
|
||||
if self.use_zero_copy_run:
|
||||
self.input_tensor.copy_from_cpu(img)
|
||||
self.predictor.zero_copy_run()
|
||||
else:
|
||||
im = paddle.fluid.core.PaddleTensor(img)
|
||||
self.predictor.run([im])
|
||||
outputs = []
|
||||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
preds = outputs[0]
|
||||
|
||||
# preds = self.predictor(img)
|
||||
post_result = self.postprocess_op(preds, shape_list)
|
||||
dt_boxes = post_result[0]['points']
|
||||
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
||||
elapse = time.time() - starttime
|
||||
|
@ -146,8 +158,6 @@ class TextDetector(object):
|
|||
|
||||
if __name__ == "__main__":
|
||||
args = utility.parse_args()
|
||||
place = paddle.CPUPlace()
|
||||
paddle.disable_static(place)
|
||||
|
||||
image_file_list = get_image_file_list(args.image_dir)
|
||||
logger = get_logger()
|
||||
|
|
|
@ -29,12 +29,11 @@ import cv2
|
|||
import json
|
||||
import paddle
|
||||
|
||||
from ppocr.utils.logging import get_logger
|
||||
from ppocr.data import create_operators, transform
|
||||
from ppocr.modeling import build_model
|
||||
from ppocr.modeling.architectures import build_model
|
||||
from ppocr.postprocess import build_post_process
|
||||
from ppocr.utils.save_load import init_model
|
||||
from ppocr.utils.utility import print_dict, get_image_file_list
|
||||
from ppocr.utils.utility import get_image_file_list
|
||||
import tools.program as program
|
||||
|
||||
|
||||
|
@ -67,11 +66,11 @@ def main():
|
|||
|
||||
# create data ops
|
||||
transforms = []
|
||||
for op in config['EVAL']['dataset']['transforms']:
|
||||
for op in config['Eval']['dataset']['transforms']:
|
||||
op_name = list(op)[0]
|
||||
if 'Label' in op_name:
|
||||
continue
|
||||
elif op_name == 'keepKeys':
|
||||
elif op_name == 'KeepKeys':
|
||||
op[op_name]['keep_keys'] = ['image', 'shape']
|
||||
transforms.append(op)
|
||||
|
||||
|
@ -92,8 +91,7 @@ def main():
|
|||
|
||||
images = np.expand_dims(batch[0], axis=0)
|
||||
shape_list = np.expand_dims(batch[1], axis=0)
|
||||
images = paddle.to_variable(images)
|
||||
print(images.shape)
|
||||
images = paddle.to_tensor(images)
|
||||
preds = model(images)
|
||||
post_result = post_process_class(preds, shape_list)
|
||||
boxes = post_result[0]['points']
|
||||
|
@ -109,14 +107,7 @@ def main():
|
|||
draw_det_res(boxes, config, src_img, file)
|
||||
logger.info("success!")
|
||||
|
||||
# save inference model
|
||||
# paddle.jit.save(model, 'output/model')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
place, config = program.preprocess()
|
||||
paddle.disable_static(place)
|
||||
|
||||
logger = get_logger()
|
||||
print_dict(config, logger)
|
||||
config, device, logger, vdl_writer = program.preprocess()
|
||||
main()
|
|
@ -27,12 +27,11 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
|||
|
||||
import paddle
|
||||
|
||||
from ppocr.utils.logging import get_logger
|
||||
from ppocr.data import create_operators, transform
|
||||
from ppocr.modeling import build_model
|
||||
from ppocr.modeling.architectures import build_model
|
||||
from ppocr.postprocess import build_post_process
|
||||
from ppocr.utils.save_load import init_model
|
||||
from ppocr.utils.utility import print_dict, get_image_file_list
|
||||
from ppocr.utils.utility import get_image_file_list
|
||||
import tools.program as program
|
||||
|
||||
|
||||
|
@ -54,13 +53,13 @@ def main():
|
|||
|
||||
# create data ops
|
||||
transforms = []
|
||||
for op in config['EVAL']['dataset']['transforms']:
|
||||
for op in config['Eval']['dataset']['transforms']:
|
||||
op_name = list(op)[0]
|
||||
if 'Label' in op_name:
|
||||
continue
|
||||
elif op_name in ['RecResizeImg']:
|
||||
op[op_name]['infer_mode'] = True
|
||||
elif op_name == 'keepKeys':
|
||||
elif op_name == 'KeepKeys':
|
||||
op[op_name]['keep_keys'] = ['image']
|
||||
transforms.append(op)
|
||||
global_config['infer_mode'] = True
|
||||
|
@ -75,22 +74,14 @@ def main():
|
|||
batch = transform(data, ops)
|
||||
|
||||
images = np.expand_dims(batch[0], axis=0)
|
||||
images = paddle.to_variable(images)
|
||||
images = paddle.to_tensor(images)
|
||||
preds = model(images)
|
||||
post_result = post_process_class(preds)
|
||||
for rec_reuslt in post_result:
|
||||
logger.info('\t result: {}'.format(rec_reuslt))
|
||||
logger.info("success!")
|
||||
|
||||
# save inference model
|
||||
# currently, paddle.jit.to_static not support rnn
|
||||
# paddle.jit.save(model, 'output/rec/model')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
place, config = program.preprocess()
|
||||
paddle.disable_static(place)
|
||||
|
||||
logger = get_logger()
|
||||
print_dict(config, logger)
|
||||
config, device, logger, vdl_writer = program.preprocess()
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue