From dc8d6f6f65168afdf3401642c697b7fd1323f12f Mon Sep 17 00:00:00 2001 From: LDOUBLEV Date: Thu, 2 Jul 2020 14:22:30 +0800 Subject: [PATCH] optimize doc --- deploy/lite/readme.md | 58 +++++++++++++++++++++++++------------------ 1 file changed, 34 insertions(+), 24 deletions(-) diff --git a/deploy/lite/readme.md b/deploy/lite/readme.md index 78c1938f..c1056a58 100644 --- a/deploy/lite/readme.md +++ b/deploy/lite/readme.md @@ -1,28 +1,27 @@ -# PaddleOCR 移动端部署 +# PaddleOCR 模型部署 -本教程介绍如何在移动端部署PaddleOCR超轻量中文检测、识别模型。 - -## 运行准备 -- 电脑(编译Paddle-Lite) -- 安卓手机(armv7或armv8) +PaddleOCR是集训练、预测、部署于一体的实用OCR工具库。本教程将介绍在安卓移动端部署PaddleOCR超轻量中文检测、识别模型的主要流程。 ## 1. 准备环境 +### 运行准备 +- 电脑(编译Paddle-Lite) +- 安卓手机(armv7或armv8) + ### 1.1 准备交叉编译环境 -交叉编译环境用于编译Paddle-Lite和PaddleOCR的C++ demo。 +交叉编译环境用于编译[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)和PaddleOCR的C++ demo。 支持多种开发环境,不同开发环境的编译流程请参考对应文档。: 1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker) 2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android) 3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13) 4. [Windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#windows) - ### 1.2 准备预编译库 预编译库有两种获取方式: - 1. 直接下载,下载[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/release_lib.html#android-toolchain-gcc). - 注意选择with_extra=ON,with_cv=ON的下载链接。 + 注意选择`with_extra=ON,with_cv=ON`的下载链接。 - 2. 编译Paddle-Lite得到,Paddle-Lite的编译方式如下: ``` git clone https://github.com/PaddlePaddle/Paddle-Lite.git @@ -30,12 +29,12 @@ cd Paddle-Lite ./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON ``` -注意:编译Paddle-Lite获得预编译库时,需要打开--with_cv=ON --with_extra=ON两个选项,--arch表示arm版本,这里指定为armv8, +注意:编译Paddle-Lite获得预编译库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8, 更多编译命令 介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。 -直接下载预编译库并解压后,可以得到'inference_lite_lib.android.armv8/'文件夹,通过编译Paddle-Lite得到的预编译库位于 -'Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/'文件夹下。 +直接下载预编译库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预编译库位于 +`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。 预编译库的文件目录如下: ``` inference_lite_lib.android.armv8/ @@ -66,26 +65,36 @@ inference_lite_lib.android.armv8/ ### 2.1 模型优化 -Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle_lite的opt工具可以自动 -对模inference型进行优化,优化后的模型更轻量,模型运行速度更快。 +Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle-lite的opt工具可以自动 +对inference模型进行优化,优化后的模型更轻量,模型运行速度更快。 -模型优化需要使用Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下: +下述表格中提供了优化好的超轻量中文模型: + +|模型简介|检测模型|识别模型| +|-|-|-| +|超轻量级中文OCR opt优化模型|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)| + +如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](###2.2与手机联调)。 + +如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。 + +模型优化需要Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下: ``` -# 如果准备环境中已经clone了Paddle-Lite,则不用重新clone Paddle-Lite +# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite git clone https://github.com/PaddlePaddle/Paddle-Lite.git cd Paddle-Lite # 启动编译 ./lite/tools/build.sh build_optimize_tool ``` -编译完成后,opt文件位于'build.opt/lite/api/'下,可通过如下方式查看opt的运行选项和使用方式; +编译完成后,opt文件位于`build.opt/lite/api/`下,可通过如下方式查看opt的运行选项和使用方式; ``` cd build.opt/lite/api/ ./opt ``` |选项|说明| -|:-:|:-:| +|-|-| |--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径| |--model_file|待优化的PaddlePaddle模型(combined形式)的网络结构文件路径| |--param_file|待优化的PaddlePaddle模型(combined形式)的权重文件路径| @@ -110,22 +119,23 @@ wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar ./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm ``` -转换成功后,当前目录下会多出ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb结尾的文件,即是转换成功的模型文件。 +转换成功后,当前目录下会多出`ch_det_mv3_db_opt.nb`, `ch_rec_mv3_crnn_opt.nb`结尾的文件,即是转换成功的模型文件。 +注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt 转换的输入模型是paddle保存的inference模型 ### 2.2 与手机联调 首先需要进行一些准备工作。 1. 准备一台arm8的安卓手机,如果编译的预测库和opt文件是armv7,则需要arm7的手机。 2. 打开手机的USB调试选项,选择文件传输模式,连接电脑 - 3. 电脑上安装adb工具,用于调试。在电脑终端中输入'adb devices',如果有类似以下输出,则表示安装成功。 + 3. 电脑上安装adb工具,用于调试。在电脑终端中输入`adb devices`,如果有类似以下输出,则表示安装成功。 ``` List of devices attached 744be294 device ``` - 4. 准备预测库、模型和预测文件,在预测库inference_lite_lib.android.armv8/demo/cxx/下新建一个ocr/文件夹,并将转换后的nb模型、 - PaddleOCR repo中PaddleOCR/deploy/lite/ 下的所有文件放在新建的ocr文件夹下。执行完成后,ocr文件夹下将有如下文件格式: + 4. 准备预测库、模型和预测文件,在预测库`inference_lite_lib.android.armv8/demo/cxx/`下新建一个`ocr/`文件夹,并将转换后的nb模型、 + PaddleOCR repo中`PaddleOCR/deploy/lite/` 下的所有文件放在新建的ocr文件夹下。执行完成后,ocr文件夹下将有如下文件格式: ``` demo/cxx/ocr/ @@ -149,8 +159,8 @@ demo/cxx/ocr/ # 将编译的可执行文件移动到debug文件夹中 mv ocr_db_crnn ./debug/ ``` - 准备测试图像,以PaddleOCR/doc/imgs/12.jpg为例,将测试的图像复制到demo/cxx/ocr/debug/文件夹下。 - 准备字典文件,将PaddleOCR/ppocr/utils/ppocr_keys_v1.txt复制到demo/cxx/ocr/debug/文件夹下。 + 准备测试图像,以`PaddleOCR/doc/imgs/12.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。 + 准备字典文件,将`PaddleOCR/ppocr/utils/ppocr_keys_v1.txt`复制到`demo/cxx/ocr/debug/`文件夹下。 上述步骤完成后就可以使用adb将文件push到手机上运行,步骤如下: ``` adb push debug /data/local/tmp/