Merge pull request #778 from LDOUBLEV/fixslim

opt slim doc and add res18 yml
This commit is contained in:
Double_V 2020-09-21 15:37:48 +08:00 committed by GitHub
commit e086071da2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 151 additions and 318 deletions

53
configs/det/det_r18_vd_db.yml Executable file
View File

@ -0,0 +1,53 @@
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_r_18_vd_db/
save_epoch_step: 200
eval_batch_step: [3000, 2000]
train_batch_size_per_card: 8
test_batch_size_per_card: 1
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet18_vd_pretrained/
save_res_path: ./output/det_r18_vd_db/predicts_db.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
layers: 18
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 256
out_channels: 2
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5

View File

@ -0,0 +1,62 @@
## 介绍
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型裁剪通过移出网络模型中的子模型来减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
本教程将介绍如何使用PaddleSlim量化PaddleOCR的模型。
在开始本教程之前,建议先了解
1. [PaddleOCR模型的训练方法](../../../doc/doc_ch/quickstart.md)
2. [分类模型裁剪教程](https://paddlepaddle.github.io/PaddleSlim/tutorials/pruning_tutorial/)
3. [PaddleSlim 裁剪压缩API](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/)
## 快速开始
模型裁剪主要包括五个步骤:
1. 安装 PaddleSlim
2. 准备训练好的模型
3. 敏感度分析、训练
4. 模型裁剪训练
5. 导出模型、预测部署
### 1. 安装PaddleSlim
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim
python setup.py install
```
### 2. 获取预训练模型
模型裁剪需要加载事先训练好的模型PaddleOCR也提供了一系列模型[../../../doc/doc_ch/models_list.md],开发者可根据需要自行选择模型或使用自己的模型。
### 3. 敏感度分析训练
加载预训练模型后,通过对现有模型的每个网络层进行敏感度分析,了解各网络层冗余度,从而决定每个网络层的裁剪比例。
敏感度分析的具体细节见:[敏感度分析](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/tutorials/image_classification_sensitivity_analysis_tutorial.md)
进入PaddleOCR根目录通过以下命令对模型进行敏感度分析训练
```bash
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights="your trained model" Global.test_batch_size_per_card=1
```
### 4. 模型裁剪训练
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时为了尽可能多的保留从图像中提取的低阶特征我们跳过了backbone中靠近输入的4个卷积层。同样为了减少由于裁剪导致的模型性能损失我们通过之前敏感度分析所获得的敏感度表挑选出了一些冗余较少对裁剪较为敏感的[网络层](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41)并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
```bash
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
```
通过对比可以发现,经过裁剪训练保存的模型更小。
### 5. 导出模型、预测部署
在得到裁剪训练保存的模型后我们可以将其导出为inference_model
```bash
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
```
inference model的预测和部署参考
1. [inference model python端预测](../../../doc/doc_ch/inference.md)
2. [inference model C++预测](../../cpp_infer/readme.md)
3. [inference model在移动端部署](../../lite/readme.md)

View File

@ -1,180 +0,0 @@
\> 运行示例前请先安装develop版本PaddleSlim
# 模型裁剪压缩教程
压缩结果:
<table>
<thead>
<tr>
<th>序号</th>
<th>任务</th>
<th>模型</th>
<th>压缩策略<sup><a href="#quant">[3]</a><a href="#prune">[4]</a><sup></th>
<th>精度(自建中文数据集)</th>
<th>耗时<sup><a href="#latency">[1]</a></sup>(ms)</th>
<th>整体耗时<sup><a href="#rec">[2]</a></sup>(ms)</th>
<th>加速比</th>
<th>整体模型大小(M)</th>
<th>压缩比例</th>
<th>下载链接</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">0</td>
<td>检测</td>
<td>MobileNetV3_DB</td>
<td></td>
<td>61.7</td>
<td>224</td>
<td rowspan="2">375</td>
<td rowspan="2">-</td>
<td rowspan="2">8.6</td>
<td rowspan="2">-</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>MobileNetV3_CRNN</td>
<td></td>
<td>62.0</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td rowspan="2">1</td>
<td>检测</td>
<td>SlimTextDet</td>
<td>PACT量化训练</td>
<td>62.1</td>
<td>195</td>
<td rowspan="2">348</td>
<td rowspan="2">8%</td>
<td rowspan="2">2.8</td>
<td rowspan="2">67.82%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td rowspan="2">2</td>
<td>检测</td>
<td>SlimTextDet_quat_pruning</td>
<td>剪裁+PACT量化训练</td>
<td>60.86</td>
<td>142</td>
<td rowspan="2">288</td>
<td rowspan="2">30%</td>
<td rowspan="2">2.8</td>
<td rowspan="2">67.82%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td rowspan="2">3</td>
<td>检测</td>
<td>SlimTextDet_pruning</td>
<td>剪裁</td>
<td>61.57</td>
<td>138</td>
<td rowspan="2">295</td>
<td rowspan="2">27%</td>
<td rowspan="2">2.9</td>
<td rowspan="2">66.28%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
</tbody>
</table>
## 概述
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型裁剪通过移出网络模型中的子模型来减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
该示例使用PaddleSlim提供的[裁剪压缩API](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/)对OCR模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
\- [OCR模型的常规训练方法](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md)
\- [PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)
## 安装PaddleSlim
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim
python setup.py install
```
## 获取预训练模型
[检测预训练模型下载地址]()
## 敏感度分析训练
加载预训练模型后,通过对现有模型的每个网络层进行敏感度分析,了解各网络层冗余度,从而决定每个网络层的裁剪比例。敏感度分析的具体细节见:[敏感度分析](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/tutorials/image_classification_sensitivity_analysis_tutorial.md)
进入PaddleOCR根目录通过以下命令对模型进行敏感度分析
```bash
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
```
## 裁剪模型与fine-tune
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时为了尽可能多的保留从图像中提取的低阶特征我们跳过了backbone中靠近输入的4个卷积层。同样为了减少由于裁剪导致的模型性能损失我们通过之前敏感度分析所获得的敏感度表挑选出了一些冗余较少对裁剪较为敏感的[网络层](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41)并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
```bash
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
```
## 导出模型
在得到裁剪训练保存的模型后我们可以将其导出为inference_model用于预测部署
```bash
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
```

View File

@ -1,162 +1,60 @@
> 运行示例前请先安装1.2.0或更高版本PaddleSlim
# 模型量化压缩教程
压缩结果:
<table>
<thead>
<tr>
<th>序号</th>
<th>任务</th>
<th>模型</th>
<th>压缩策略</th>
<th>精度(自建中文数据集)</th>
<th>耗时(ms)</th>
<th>整体耗时(ms)</th>
<th>加速比</th>
<th>整体模型大小(M)</th>
<th>压缩比例</th>
<th>下载链接</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">0</td>
<td>检测</td>
<td>MobileNetV3_DB</td>
<td></td>
<td>61.7</td>
<td>224</td>
<td rowspan="2">375</td>
<td rowspan="2">-</td>
<td rowspan="2">8.6</td>
<td rowspan="2">-</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>MobileNetV3_CRNN</td>
<td></td>
<td>62.0</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td rowspan="2">1</td>
<td>检测</td>
<td>SlimTextDet</td>
<td>PACT量化训练</td>
<td>62.1</td>
<td>195</td>
<td rowspan="2">348</td>
<td rowspan="2">8%</td>
<td rowspan="2">2.8</td>
<td rowspan="2">67.82%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td rowspan="2">2</td>
<td>检测</td>
<td>SlimTextDet_quat_pruning</td>
<td>剪裁+PACT量化训练</td>
<td>60.86</td>
<td>142</td>
<td rowspan="2">288</td>
<td rowspan="2">30%</td>
<td rowspan="2">2.8</td>
<td rowspan="2">67.82%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td rowspan="2">3</td>
<td>检测</td>
<td>SlimTextDet_pruning</td>
<td>剪裁</td>
<td>61.57</td>
<td>138</td>
<td rowspan="2">295</td>
<td rowspan="2">27%</td>
<td rowspan="2">2.9</td>
<td rowspan="2">66.28%</td>
<td></td>
</tr>
<tr>
<td>识别</td>
<td>SlimTextRec</td>
<td>PACT量化训练</td>
<td>61.48</td>
<td>8.6</td>
<td></td>
</tr>
</tbody>
</table>
## 概述
## 介绍
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
模型量化可以在基本不损失模型的精度的情况下将FP32精度的模型参数转换为Int8精度减小模型参数大小并加速计算使用量化后的模型在移动端等部署时更具备速度优势。
该示例使用PaddleSlim提供的[量化压缩API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)对OCR模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
本教程将介绍如何使用PaddleSlim量化PaddleOCR的模型。
- [OCR模型的常规训练方法](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md)
- [PaddleSlim使用文档](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
在开始本教程之前,建议先了解[PaddleOCR模型的训练方法](../../../doc/doc_ch/quickstart.md)以及[PaddleSlim](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
## 快速开始
量化多适用于轻量模型在移动端的部署,当训练出一个模型后,如果希望进一步的压缩模型大小并加速预测,可使用量化的方法压缩模型。
## 安装PaddleSlim
模型量化主要包括五个步骤:
1. 安装 PaddleSlim
2. 准备训练好的模型
3. 量化训练
4. 导出量化推理模型
5. 量化模型预测部署
### 1. 安装PaddleSlim
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim
python setup.py install
```
### 2. 准备训练好的模型
PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list.md),如果待量化的模型不在列表中,需要按照[常规训练](../../../doc/doc_ch/quickstart.md)方法得到训练好的模型。
### 3. 量化训练
量化训练包括离线量化训练和在线量化训练,在线量化训练效果更好,需加载预训练模型,在定义好量化策略后即可对模型进行量化。
## 获取预训练模型
[识别预训练模型下载地址]()
[检测预训练模型下载地址]()
## 量化训练
加载预训练模型后,在定义好量化策略后即可对模型进行量化。量化相关功能的使用具体细节见:[模型量化](https://paddleslim.readthedocs.io/zh_CN/latest/api_cn/quantization_api.html)
进入PaddleOCR根目录通过以下命令对模型进行量化
量化训练的代码位于slim/quantization/quant/py 中,比如训练检测模型,训练指令如下:
```bash
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=det_mv3_db/best_accuracy Global.save_model_dir=./output/quant_model
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
# 比如下载提供的训练模型
wget https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar
tar xf ch_ppocr_mobile_v1.1_det_train.tar
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v1.1_det_train/best_accuracy Global.save_model_dir=./output/quant_model
```
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
## 导出模型
### 4. 导出模型
在得到量化训练保存的模型后我们可以将其导出为inference_model用于预测部署
```bash
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
```
### 5. 量化模型部署
上述步骤导出的量化模型参数精度仍然是FP32但是参数的数值范围是int8导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。
量化模型部署的可参考 [移动端模型部署](../lite/readme.md)

View File

@ -117,7 +117,7 @@ class TextDetector(object):
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 10 or rect_height <= 10:
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)