Merge pull request #3 from PaddlePaddle/develop

update2020-7-20
This commit is contained in:
shaohua.zhang 2020-07-20 17:15:45 +08:00 committed by GitHub
commit e0fa21bd94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 1513 additions and 468 deletions

277
README.md
View File

@ -1,213 +1,216 @@
[English](README_en.md) | 简体中文 English | [简体中文](README_cn.md)
## 简介 ## Introduction
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。 PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice.
**直播预告2020年7月21日晚8点B站直播PaddleOCR开源大礼包全面解读直播地址当天更新** **Live stream on coming day**: July 21, 2020 at 8 pm BiliBili station live stream
**近期更新** **Recent updates**
- 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO支持iOS和Android系统
- 2020.7.15 完善预测部署添加基于C++预测引擎推理、服务化部署和端侧部署方案以及超轻量级中文OCR模型预测耗时Benchmark
- 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具
- 2020.7.9 添加支持空格的识别模型,识别效果,预测及训练方式请参考快速开始和文本识别训练相关文档
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
- [more](./doc/doc_ch/update.md)
- 2020.7.15, Add mobile App demo , support both iOS and Android ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the deployment ability, add the C + + inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
- 2020.7.9 Add a new model to support recognize the character "space".
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
- [more](./doc/doc_en/update_en.md)
## 特性 ## Features
- 超轻量级中文OCR模型总模型仅8.6M - Ultra-lightweight OCR model, total model size is only 8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别 - Single model supports Chinese/English numbers combination recognition, vertical text recognition, long text recognition
- 检测模型DB4.1M+识别模型CRNN4.5M - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- 实用通用中文OCR模型 - Various text detection algorithms: EAST, DB
- 多种预测推理部署方案,包括服务部署和端侧部署 - Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
- 多种文本检测训练算法EAST、DB - Support Linux, Windows, MacOS and other systems.
- 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE
- 可运行于Linux、Windows、MacOS等多种系统
## 快速体验 ## Visualization
<div align="center"> ![](doc/imgs_results/11.jpg)
<img src="doc/imgs_results/11.jpg" width="800">
</div>
上图是超轻量级中文OCR模型效果展示更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)。 ![](doc/imgs_results/img_10.jpg)
- 超轻量级中文OCR在线体验地址https://www.paddlepaddle.org.cn/hub/scene/ocr [More visualization](./doc/doc_en/visualization_en.md)
- 移动端DEMO体验(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)[安装包二维码获取地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
Android手机也可以扫描下面二维码安装体验。 You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in the website to obtain the QR code for installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
Also, you can scan the QR code blow to install the App (**Android support only**)
<div align="center"> <div align="center">
<img src="./doc/ocr-android-easyedge.png" width = "200" height = "200" /> <img src="./doc/ocr-android-easyedge.png" width = "200" height = "200" />
</div> </div>
- [**中文OCR模型快速使用**](./doc/doc_ch/quickstart.md) - [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)
<a name="Supported-Chinese-model-list"></a>
## 中文OCR模型列表 ### Supported Models:
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址| |Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
|-|-|-|-|-| |-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar) |db_crnn_mobile|ultra-lightweight OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar) |db_crnn_server|General OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
## 文档教程
- [快速安装](./doc/doc_ch/installation.md) ## Tutorials
- [中文OCR模型快速使用](./doc/doc_ch/quickstart.md) - [Installation](./doc/doc_en/installation_en.md)
- 算法介绍 - [Quick Start](./doc/doc_en/quickstart_en.md)
- [文本检测](#文本检测算法) - Algorithm introduction
- [文本识别](#文本识别算法) - [Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
- [端到端OCR](#端到端OCR算法) - [Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
- 模型训练/评估 - [END-TO-END OCR Algorithm](#ENDENDOCRALGORITHM)
- [文本检测](./doc/doc_ch/detection.md) - Model training/evaluation
- [文本识别](./doc/doc_ch/recognition.md) - [Text Detection](./doc/doc_en/detection_en.md)
- [yml参数配置文件介绍](./doc/doc_ch/config.md) - [Text Recognition](./doc/doc_en/recognition_en.md)
- [中文OCR训练预测技巧](./doc/doc_ch/tricks.md) - [Yml Configuration](./doc/doc_en/config_en.md)
- 预测部署 - [Tricks](./doc/doc_en/tricks_en.md)
- [基于Python预测引擎推理](./doc/doc_ch/inference.md) - Deployment
- [基于C++预测引擎推理](./deploy/cpp_infer/readme.md) - [Python Inference](./doc/doc_en/inference_en.md)
- [服务化部署](./doc/doc_ch/serving.md) - [C++ Inference](./deploy/cpp_infer/readme_en.md)
- [端侧部署](./deploy/lite/readme.md) - [Serving](./doc/doc_en/serving_en.md)
- 模型量化压缩coming soon - [Mobile](./deploy/lite/readme_en.md)
- [Benchmark](./doc/doc_ch/benchmark.md) - Model Quantization and Compression (coming soon)
- 数据集 - [Benchmark](./doc/doc_en/benchmark_en.md)
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md) - Datasets
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md) - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
- [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md) - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
- [常用数据标注工具](./doc/doc_ch/data_annotation.md) - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [常用数据合成工具](./doc/doc_ch/data_synthesis.md) - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
- [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- [FAQ](#FAQ) - [FAQ](#FAQ)
- 效果展示 - Visualization
- [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示) - [Ultra-lightweight Chinese/English OCR Visualization](#UCOCRVIS)
- [通用中文OCR效果展示](#通用中文OCR效果展示) - [General Chinese/English OCR Visualization](#GeOCRVIS)
- [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示) - [Chinese/English OCR Visualization (Support Space Recognization )](#SpaceOCRVIS)
- [技术交流群](#欢迎加入PaddleOCR技术交流群) - [Community](#Community)
- [参考文献](./doc/doc_ch/reference.md) - [References](./doc/doc_en/reference_en.md)
- [许可证书](#许可证书) - [License](#LICENSE)
- [贡献代码](#贡献代码) - [Contribution](#CONTRIBUTION)
<a name="算法介绍"></a> <a name="TEXTDETECTIONALGORITHM"></a>
## 算法介绍 ## Text Detection Algorithm
<a name="文本检测算法"></a>
### 1.文本检测算法
PaddleOCR开源的文本检测算法列表: PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155)) - [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947)) - [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, coming soon) - [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
在ICDAR2015文本检测公开数据集上算法效果如下 On the ICDAR2015 dataset, the text detection result is as follows:
|模型|骨干网络|precision|recall|Hmean|下载链接| |Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-| |-|-|-|-|-|-|
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)| |EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)| |EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| |DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| |DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据训练中文检测模型的相关配置和预训练文件如下 For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training datathe related configuration and pre-trained models for text detection task are as follows:
|模型|骨干网络|配置文件|预训练模型| |Model|Backbone|Configuration file|Pre-trained model|
|-|-|-|-| |-|-|-|-|
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)| |ultra-lightweight OCR model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)| |General OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
* 注: 上述DB模型的训练和评估需设置后处理参数box_thresh=0.6unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化 * Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./doc/doc_ch/detection.md)。 For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
<a name="文本识别算法"></a> <a name="TEXTRECOGNITIONALGORITHM"></a>
### 2.文本识别算法 ## Text Recognition Algorithm
PaddleOCR开源的文本识别算法列表: PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717)) - [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085)) - [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1)) - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, coming soon) - [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下 Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接| |Model|Backbone|Avg Accuracy|Module combination|Download link|
|-|-|-|-|-| |-|-|-|-|-|
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)| |Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)| |Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)| |CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)| |CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)| |STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)| |STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| |RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| |RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型相关配置和预训练文件如下 We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the model. The related configuration and pre-trained models are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-| |-|-|-|-|
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)| |ultra-lightweight OCR model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)| |General OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./doc/doc_ch/recognition.md)。 Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
<a name="端到端OCR算法"></a> <a name="ENDENDOCRALGORITHM"></a>
### 3.端到端OCR算法 ## END-TO-END OCR Algorithm
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, coming soon) - [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
## 效果展示 ## Visualization
<a name="超轻量级中文OCR效果展示"></a> <a name="UCOCRVIS"></a>
### 1.超轻量级中文OCR效果展示 [more](./doc/doc_ch/visualization.md) ### 1.Ultra-lightweight Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
<div align="center"> <div align="center">
<img src="doc/imgs_results/1.jpg" width="800"> <img src="doc/imgs_results/1.jpg" width="800">
</div> </div>
<a name="通用中文OCR效果展示"></a> <a name="GeOCRVIS"></a>
### 2.通用中文OCR效果展示 [more](./doc/doc_ch/visualization.md) ### 2. General Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
<div align="center"> <div align="center">
<img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800"> <img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div> </div>
<a name="支持空格的中文OCR效果展示"></a> <a name="SpaceOCRVIS"></a>
### 3.支持空格的中文OCR效果展示 [more](./doc/doc_ch/visualization.md) ### 3.Chinese/English OCR Visualization (Space_support) [more](./doc/doc_en/visualization_en.md)
<div align="center"> <div align="center">
<img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800"> <img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div> </div>
<a name="FAQ"></a> <a name="FAQ"></a>
## FAQ ## FAQ
1. **转换attention识别模型时报错KeyError: 'predict'** 1. Error when using attention-based recognition model: KeyError: 'predict'
问题已解,请更新到最新代码。
2. **关于推理速度** The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num默认值为30可以改为10或其他数值。
3. **服务部署与移动端部署** 2. About inference speed
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案欢迎持续关注。
4. **自研算法发布时间** When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
自研算法SAST、SRN、End2End-PSL都将在7-8月陆续发布敬请期待。
[more](./doc/doc_ch/FAQ.md) 3. Service deployment and mobile deployment
<a name="欢迎加入PaddleOCR技术交流群"></a> It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
## 欢迎加入PaddleOCR技术交流群
请扫描下面二维码完成问卷填写获取加群二维码和OCR方向的炼丹秘籍 4. Release time of self-developed algorithm
Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
[more](./doc/doc_en/FAQ_en.md)
<a name="Community"></a>
## Community
Scan the QR code below with your wechat and completing the questionnaire, you can access to offical technical exchange group.
<div align="center"> <div align="center">
<img src="./doc/joinus.jpg" width = "200" height = "200" /> <img src="./doc/joinus.jpg" width = "200" height = "200" />
</div> </div>
<a name="许可证书"></a> <a name="LICENSE"></a>
## 许可证书 ## License
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。 This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
<a name="贡献代码"></a> <a name="CONTRIBUTION"></a>
## 贡献代码 ## Contribution
我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。 We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。 - Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题 - Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码 - Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集 - Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码 - Thanks [authorfu](https://github.com/authorfu) for contributing Android demo and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.

213
README_cn.md Normal file
View File

@ -0,0 +1,213 @@
[English](README.md) | 简体中文
## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。
**直播预告2020年7月21日晚8点B站直播PaddleOCR开源大礼包全面解读直播地址当天更新**
**近期更新**
- 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO支持iOS和Android系统
- 2020.7.15 完善预测部署添加基于C++预测引擎推理、服务化部署和端侧部署方案以及超轻量级中文OCR模型预测耗时Benchmark
- 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具
- 2020.7.9 添加支持空格的识别模型,识别效果,预测及训练方式请参考快速开始和文本识别训练相关文档
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
- [more](./doc/doc_ch/update.md)
## 特性
- 超轻量级中文OCR模型总模型仅8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
- 检测模型DB4.1M+识别模型CRNN4.5M
- 实用通用中文OCR模型
- 多种预测推理部署方案,包括服务部署和端侧部署
- 多种文本检测训练算法EAST、DB
- 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE
- 可运行于Linux、Windows、MacOS等多种系统
## 快速体验
<div align="center">
<img src="doc/imgs_results/11.jpg" width="800">
</div>
上图是超轻量级中文OCR模型效果展示更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)。
- 超轻量级中文OCR在线体验地址https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端DEMO体验(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)[安装包二维码获取地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
Android手机也可以扫描下面二维码安装体验。
<div align="center">
<img src="./doc/ocr-android-easyedge.png" width = "200" height = "200" />
</div>
- [**中文OCR模型快速使用**](./doc/doc_ch/quickstart.md)
## 中文OCR模型列表
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速使用](./doc/doc_ch/quickstart.md)
- 算法介绍
- [文本检测](#文本检测算法)
- [文本识别](#文本识别算法)
- [端到端OCR](#端到端OCR算法)
- 模型训练/评估
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)
- [yml参数配置文件介绍](./doc/doc_ch/config.md)
- [中文OCR训练预测技巧](./doc/doc_ch/tricks.md)
- 预测部署
- [基于Python预测引擎推理](./doc/doc_ch/inference.md)
- [基于C++预测引擎推理](./deploy/cpp_infer/readme.md)
- [服务化部署](./doc/doc_ch/serving.md)
- [端侧部署](./deploy/lite/readme.md)
- 模型量化压缩coming soon
- [Benchmark](./doc/doc_ch/benchmark.md)
- 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
- [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md)
- [常用数据标注工具](./doc/doc_ch/data_annotation.md)
- [常用数据合成工具](./doc/doc_ch/data_synthesis.md)
- [FAQ](#FAQ)
- 效果展示
- [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
- [通用中文OCR效果展示](#通用中文OCR效果展示)
- [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)
<a name="算法介绍"></a>
## 算法介绍
<a name="文本检测算法"></a>
### 1.文本检测算法
PaddleOCR开源的文本检测算法列表
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, coming soon)
在ICDAR2015文本检测公开数据集上算法效果如下
|模型|骨干网络|precision|recall|Hmean|下载链接|
|-|-|-|-|-|-|
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据训练中文检测模型的相关配置和预训练文件如下
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
* 注: 上述DB模型的训练和评估需设置后处理参数box_thresh=0.6unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./doc/doc_ch/detection.md)。
<a name="文本识别算法"></a>
### 2.文本识别算法
PaddleOCR开源的文本识别算法列表
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, coming soon)
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|-|-|-|-|-|
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型相关配置和预训练文件如下
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./doc/doc_ch/recognition.md)。
<a name="端到端OCR算法"></a>
### 3.端到端OCR算法
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, coming soon)
## 效果展示
<a name="超轻量级中文OCR效果展示"></a>
### 1.超轻量级中文OCR效果展示 [more](./doc/doc_ch/visualization.md)
<div align="center">
<img src="doc/imgs_results/1.jpg" width="800">
</div>
<a name="通用中文OCR效果展示"></a>
### 2.通用中文OCR效果展示 [more](./doc/doc_ch/visualization.md)
<div align="center">
<img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
<a name="支持空格的中文OCR效果展示"></a>
### 3.支持空格的中文OCR效果展示 [more](./doc/doc_ch/visualization.md)
<div align="center">
<img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
<a name="FAQ"></a>
## FAQ
1. **转换attention识别模型时报错KeyError: 'predict'**
问题已解,请更新到最新代码。
2. **关于推理速度**
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num默认值为30可以改为10或其他数值。
3. **服务部署与移动端部署**
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案欢迎持续关注。
4. **自研算法发布时间**
自研算法SAST、SRN、End2End-PSL都将在7-8月陆续发布敬请期待。
[more](./doc/doc_ch/FAQ.md)
<a name="欢迎加入PaddleOCR技术交流群"></a>
## 欢迎加入PaddleOCR技术交流群
请扫描下面二维码完成问卷填写获取加群二维码和OCR方向的炼丹秘籍
<div align="center">
<img src="./doc/joinus.jpg" width = "200" height = "200" />
</div>
<a name="许可证书"></a>
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
<a name="贡献代码"></a>
## 贡献代码
我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码

View File

@ -1,302 +0,0 @@
English | [简体中文](README.md)
## INTRODUCTION
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.
**Recent updates**、
- 2020.7.9 Add recognition model to support space, [recognition result](#space Chinese OCR results). For more information: [Recognition](./doc/doc_ch/recognition.md) and [quickstart](./doc/doc_ch/quickstart.md)
- 2020.7.9 Add data auguments and learning rate decay strategies,please read [config](./doc/doc_en/config_en.md)
- 2020.6.8 Add [dataset](./doc/doc_en/datasets_en.md) and keep updating
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- [more](./doc/doc_en/update_en.md)
## FEATURES
- Lightweight Chinese OCR model, total model size is only 8.6M
- Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
- Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
<a name="Supported-Chinese-model-list"></a>
### Supported Chinese models list:
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
|-|-|-|-|-|
|chinese_db_crnn_mobile|lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
For testing our Chinese OCR onlinehttps://www.paddlepaddle.org.cn/hub/scene/ocr
**You can also quickly experience the lightweight Chinese OCR and General Chinese OCR models as follows:**
## **LIGHTWEIGHT CHINESE OCR AND GENERAL CHINESE OCR INFERENCE**
![](doc/imgs_results/11.jpg)
The picture above is the result of our lightweight Chinese OCR model. For more testing results, please see the end of the article [lightweight Chinese OCR results](#lightweight-Chinese-OCR-results) , [General Chinese OCR results](#General-Chinese-OCR-results) and [Support for space Recognition Model](#Space-Chinese-OCR-results).
#### 1. ENVIRONMENT CONFIGURATION
Please see [Quick installation](./doc/doc_en/installation_en.md)
#### 2. DOWNLOAD INFERENCE MODELS
#### (1) Download lightweight Chinese OCR models
*If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory*
Copy the detection and recognition 'inference model' address in [Chinese model List](#Supported-Chinese-model-list), download and unpack:
```
mkdir inference && cd inference
# Download the detection part of the Chinese OCR and decompress it
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# Download the recognition part of the Chinese OCR and decompress it
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```
Take lightweight Chinese OCR model as an example:
```
mkdir inference && cd inference
# Download the detection part of the lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# Download the recognition part of the lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
# Download the space-recognized part of the lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar && tar xf ch_rec_mv3_crnn_enhance_infer.tar
cd ..
```
After the decompression is completed, the file structure should be as follows:
```
|-inference
|-ch_rec_mv3_crnn
|- model
|- params
|-ch_det_mv3_db
|- model
|- params
...
```
#### 3. SINGLE IMAGE AND BATCH PREDICTION
The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default.
```bash
# Prediction on a single image by specifying image path to image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# Prediction on a batch of images by specifying image folder path to image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# If you want to use CPU for prediction, you need to set the use_gpu parameter to False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```
To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
```
# Prediction on a single image by specifying image path to image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```
To run inference of the space-Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
```
# Prediction on a single image by specifying image path to image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```
For more text detection and recognition models, please refer to the document [Inference](./doc/doc_en/inference_en.md)
## DOCUMENTATION
- [Quick installation](./doc/doc_en/installation_en.md)
- [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
- [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
- [Inference](./doc/doc_en/inference_en.md)
- [Introduction of yml file](./doc/doc_en/config_en.md)
- [Dataset](./doc/doc_en/datasets_en.md)
- [FAQ]((#FAQ)
## TEXT DETECTION ALGORITHM
PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
On the ICDAR2015 dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-|
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training datathe related configuration and pre-trained models for Chinese detection task are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
|-|-|-|-|
|lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
## TEXT RECOGNITION ALGORITHM
PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|-|-|-|-|-|
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
|-|-|-|-|
|lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
## END-TO-END OCR ALGORITHM
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
<a name="lightweight-Chinese-OCR-results"></a>
## LIGHTWEIGHT CHINESE OCR RESULTS
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
<a name="General-Chinese-OCR-results"></a>
## General Chinese OCR results
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)
<a name="Space-Chinese-OCR-results"></a>
## space Chinese OCR results
### LIGHTWEIGHT CHINESE OCR RESULTS
![](doc/imgs_results/img_11.jpg)
### General Chinese OCR results
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)
<a name="FAQ"></a>
## FAQ
1. Error when using attention-based recognition model: KeyError: 'predict'
The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
2. About inference speed
When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
3. Service deployment and mobile deployment
It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
4. Release time of self-developed algorithm
Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
[more](./doc/doc_en/FAQ_en.md)
## WELCOME TO THE PaddleOCR TECHNICAL EXCHANGE GROUP
WeChat: paddlehelp, note OCR, our assistant will get you into the group~
<img src="./doc/paddlehelp.jpg" width = "200" height = "200" />
## REFERENCES
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```
## LICENSE
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
## CONTRIBUTION
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.

View File

@ -184,7 +184,7 @@ make -j
### 运行demo ### 运行demo
* 执行以下命令完成对一幅图像的OCR识别与检测,最终输出 * 执行以下命令完成对一幅图像的OCR识别与检测
```shell ```shell
sh tools/run.sh sh tools/run.sh

View File

@ -0,0 +1,213 @@
# Server-side C++ inference
In this tutorial, we will introduce the detailed steps of deploying PaddleOCR ultra-lightweight Chinese detection and recognition models on the server side.
## 1. Prepare the environment
### Environment
- Linux, docker is recommended.
### 1.1 Compile opencv
* First of all, you need to download the source code compiled package in the Linux environment from the opencv official website. Taking opencv3.4.7 as an example, the download command is as follows.
```
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
Finally, you can see the folder of `opencv-3.4.7/` in the current directory.
* Compile opencv, the opencv source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the opencv source code path and compile it in the following way.
```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
```
Among them, `root_path` is the downloaded opencv source code path, and `install_path` is the installation path of opencv. After `make install` is completed, the opencv header file and library file will be generated in this folder for later OCR source code compilation.
The final file structure under the opencv installation path is as follows.
```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```
### 1.2 Compile or download or the Paddle inference library
* There are 2 ways to obtain the Paddle inference library, described in detail below.
#### 1.2.1 Compile from the source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle github repository and compile the inference library from the source code.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from github, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
```shell
git clone https://github.com/PaddlePaddle/Paddle.git
```
* After entering the Paddle directory, the compilation method is as follows.
```shell
rm -rf build
mkdir build
cd build
cmake .. \
-DWITH_CONTRIB=OFF \
-DWITH_MKL=ON \
-DWITH_MKLDNN=ON \
-DWITH_TESTING=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_INFERENCE_API_TEST=OFF \
-DON_INFER=ON \
-DWITH_PYTHON=ON
make -j
make inference_lib_dist
```
For more compilation parameter options, please refer to the official website of the Paddle C++ inference library:[https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html](https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html).
* After the compilation process, you can see the following files in the folder of `build/fluid_inference_install_dir/`.
```
build/fluid_inference_install_dir/
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```
Among them, `paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
#### 1.2.2 Direct download and installation
* Different cuda versions of the Linux inference library (based on GCC 4.8.2) are provided on the
[Paddle inference library official website](https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html). You can view and select the appropriate version of the inference library on the official website.
* After downloading, use the following method to uncompress.
```
tar -xf fluid_inference.tgz
```
Finally you can see the following files in the folder of `fluid_inference/`.
## 2. Compile and run the demo
### 2.1 Export the inference model
* You can refer to [Model inference](../../doc/doc_ch/inference.md)export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
```
inference/
|-- det_db
| |--model
| |--params
|-- rec_rcnn
| |--model
| |--params
```
### 2.2 Compile PaddleOCR C++ inference demo
* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.
```shell
sh tools/build.sh
```
具体地,`tools/build.sh`中内容如下。
```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
```
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`fluid_inference` folder) or the generated Paddle inference library path (`build/fluid_inference_install_dir` folder); `CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
* After the compilation is completed, an executable file named `ocr_system` will be generated in the `build` folder.
### Run the demo
* Execute the following command to complete the OCR recognition and detection of an image.
```shell
sh tools/run.sh
```
The detection results will be shown on the screen, which is as follows.
<div align="center">
<img src="../imgs/cpp_infer_pred_12.png" width="600">
</div>
### 2.3 Note
* `MKLDNN` is disabled by default for C++ inference (`use_mkldnn` in `tools/config.txt` is set to 0), if you need to use MKLDNN for inference acceleration, you need to modify `use_mkldnn` to 1, and use the latest version of the Paddle source code to compile the inference library. When using MKLDNN for CPU prediction, if multiple images are predicted at the same time, there will be a memory leak problem (the problem is not present if MKLDNN is disabled). The problem is currently being fixed, and the temporary solution is: when predicting multiple pictures, Re-initialize the recognition (`CRNNRecognizer`) and detection class (`DBDetector`) every 30 pictures or so.

9
deploy/lite/prepare.sh Normal file
View File

@ -0,0 +1,9 @@
#!/bin/bash
mkdir -p $1/demo/cxx/ocr/debug/
cp ../../ppocr/utils/ppocr_keys_v1.txt $1/demo/cxx/ocr/debug/
cp -r ./* $1/demo/cxx/ocr/
cp ./config.txt $1/demo/cxx/ocr/debug/
cp ../../doc/imgs/11.jpg $1/demo/cxx/ocr/debug/
echo "Prepare Done"

View File

@ -168,17 +168,21 @@ wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar
``` ```
4. 准备优化后的模型、预测库文件、测试图像和使用的字典文件。 4. 准备优化后的模型、预测库文件、测试图像和使用的字典文件。
在预测库`inference_lite_lib.android.armv8/demo/cxx/`下新建一个`ocr/`文件夹,
将PaddleOCR repo中`PaddleOCR/deploy/lite/` 下的除`readme.md`所有文件放在新建的ocr文件夹下。在`ocr`文件夹下新建一个`debug`文件夹,
将C++预测库so文件复制到debug文件夹下。
``` ```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR/deploy/lite/
# 运行prepare.sh准备预测库文件、测试图像和使用的字典文件并放置在预测库中的demo/cxx/ocr文件夹下
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
# 进入OCR demo的工作目录 # 进入OCR demo的工作目录
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
cd demo/cxx/ocr/ cd demo/cxx/ocr/
# 将C++预测动态库so文件复制到debug文件夹中 # 将C++预测动态库so文件复制到debug文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/ cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
``` ```
准备测试图像,以`PaddleOCR/doc/imgs/11.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。 准备测试图像,以`PaddleOCR/doc/imgs/11.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。
准备字典文件,中文超轻量模型的字典文件是`PaddleOCR/ppocr/utils/ppocr_keys_v1.txt`,将其复制到`demo/cxx/ocr/debug/`文件夹下。 准备lite opt工具优化后的模型文件`ch_det_mv3_db_opt.nbch_rec_mv3_crnn_opt.nb`,放置在`demo/cxx/ocr/debug/`文件夹下。
执行完成后ocr文件夹下将有如下文件格式 执行完成后ocr文件夹下将有如下文件格式

190
deploy/lite/readme_en.md Normal file
View File

@ -0,0 +1,190 @@
# Tutorial of PaddleOCR Mobile deployment
This tutorial will introduce how to use paddle-lite to deploy paddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
addle Lite is a lightweight inference engine for PaddlePaddle.
It provides efficient inference capabilities for mobile phones and IOTs,
and extensively integrates cross-platform hardware to provide lightweight
deployment solutions for end-side deployment issues.
## 1. Preparation
- Computer (for Compiling Paddle Lite)
- Mobile phone (arm7 or arm8)
## 2. Build ncnn library
[build for Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker)
[build for Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android)
[build for MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13)
[build for windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#windows)
## 3. Download prebuild library for android and ios
|Platform|Prebuild library Download Link|
|-|-|
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/Android/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.CV_ON.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/Android/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.CV_ON.tar.gz)|
|IOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/iOS/inference_lite_lib.ios.armv7.with_extra.CV_ON.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/iOS/inference_lite_lib.ios64.armv8.with_extra.CV_ON.tar.gz)|
|x86(Linux)|[预测库](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/X86/Linux/inference_lite_lib.x86.linux.tar.gz)|
The structure of the prediction library is as follows:
```
inference_lite_lib.android.armv8/
|-- cxx C++ prebuild library
| |-- include C++
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib
| |-- libpaddle_api_light_bundled.a C++ static library
| `-- libpaddle_light_api_shared.so C++ dynamic library
|-- java Java predict library
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++ and java demo
| |-- cxx
| `-- java
```
## 4. Inference Model Optimization
Paddle Lite provides a variety of strategies to automatically optimize the original training model, including quantization, sub-graph fusion, hybrid scheduling, Kernel optimization and so on. In order to make the optimization process more convenient and easy to use, Paddle Lite provide opt tools to automatically complete the optimization steps and output a lightweight, optimal executable model.
If you use PaddleOCR 8.6M OCR model to deploy, you can directly download the optimized model.
|Introduction|Detection model|Recognition model|Paddle Lite branch |
|-|-|-|-|
|lightweight Chinese OCR optimized model|[Download](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[Download](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)|develop|
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
./lite/tools/build.sh build_optimize_tool
```
The `opt` tool can be obtained by compiling Paddle Lite.
After the compilation is complete, the opt file is located under `build.opt/lite/api/`.
The `opt` can optimize the inference model saved by paddle.io.save_inference_model to get the model that the paddlelite API can use.
The usage of opt is as follows
```
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
./opt --model_file=./ch_det_mv3_db/model --param_file=./ch_det_mv3_db/params --optimize_out_type=naive_buffer --optimize_out=./ch_det_mv3_db_opt --valid_targets=arm
./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm
```
When the above code command is completed, there will be two more files `ch_det_mv3_db_opt.nb`,
`ch_rec_mv3_crnn_opt.nb` in the current directory, which is the converted model file.
## 5. Run optimized model on Phone
1. Prepare an Android phone with arm8. If the compiled prediction library and opt file are armv7, you need an arm7 phone and modify ARM_ABI = arm7 in the Makefile.
2. Make sure the phone is connected to the computer, open the USB debugging option of the phone, and select the file transfer mode.
3. Install the adb tool on the computer.
3.1 Install ADB for MAC
```
brew cask install android-platform-tools
```
3.2 Install ADB for Linux
```
sudo apt update
sudo apt install -y wget adb
```
3.3 Install ADB for windows
[Download Link](https://developer.android.com/studio)
Verify whether adb is installed successfully
```
$ adb devices
List of devices attached
744be294 device
```
If there is `device` output, it means the installation was successful.
4. Prepare optimized models, prediction library files, test images and dictionary files used.
```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR/deploy/lite/
# run prepare.sh
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
#
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
cd demo/cxx/ocr/
# copy paddle-lite C++ .so file to debug/ directory
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
cd inference_lite_lib.android.armv8/demo/cxx/ocr/
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
```
Prepare the test image, taking `PaddleOCR/doc/imgs/11.jpg` as an example, copy the image file to the `demo/cxx/ocr/debug/` folder.
Prepare the model files optimized by the lite opt tool, `ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb`,
and place them under the `demo/cxx/ocr/debug/` folder.
The structure of the OCR demo is as follows after the above command is executed:
```
demo/cxx/ocr/
|-- debug/
| |--ch_det_mv3_db_opt.nb Detection model
| |--ch_rec_mv3_crnn_opt.nb Recognition model
| |--11.jpg image for OCR
| |--ppocr_keys_v1.txt Dictionary file
| |--libpaddle_light_api_shared.so C++ .so file
| |--config.txt Config file
|-- config.txt
|-- crnn_process.cc
|-- crnn_process.h
|-- db_post_process.cc
|-- db_post_process.h
|-- Makefile
|-- ocr_db_crnn.cc
```
5. Run Model on phone
```
cd inference_lite_lib.android.armv8/demo/cxx/ocr/
make -j
mv ocr_db_crnn ./debug/
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
# run model
./ocr_db_crnn ch_det_mv3_db_opt.nb ch_rec_mv3_crnn_opt.nb ./11.jpg ppocr_keys_v1.txt
```
The outputs are as follows:
<div align="center">
<img src="../imgs/demo.png" width="600">
</div>

View File

@ -0,0 +1,28 @@
# Paddle Serving 服务部署
本教程将介绍基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)部署PaddleOCR在线预测服务的详细步骤。
## 快速启动服务
### 1. 准备环境
### 2. 模型转换
### 3. 启动服务
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
|版本|特点|适用场景|
|-|-|-|
|标准版|||
|快速版|||
#### 方式1. 启动标准版服务
#### 方式2. 启动快速版服务
## 发送预测请求
## 返回结果格式说明
## 自定义修改服务逻辑

View File

@ -74,7 +74,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_di
可视化文本检测结果默认保存到 ./inference_results 文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下: 可视化文本检测结果默认保存到 ./inference_results 文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](imgs_results/det_res_2.jpg) ![](../imgs_results/det_res_2.jpg)
通过设置参数det_max_side_len的大小改变检测算法中图片规范化的最大值。当图片的长宽都小于det_max_side_len则使用原图预测否则将图片等比例缩放到最大值进行预测。该参数默认设置为det_max_side_len=960. 如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以执行如下命令: 通过设置参数det_max_side_len的大小改变检测算法中图片规范化的最大值。当图片的长宽都小于det_max_side_len则使用原图预测否则将图片等比例缩放到最大值进行预测。该参数默认设置为det_max_side_len=960. 如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以执行如下命令:

View File

@ -0,0 +1,36 @@
# BENCHMARK
This document gives the prediction time-consuming benchmark of PaddleOCR Ultra Lightweight Chinese Model (8.6M) on each platform.
## TEST DATA
* 500 images were randomly sampled from the Chinese public data set [ICDAR2017-RCTW](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#ICDAR2017-RCTW-17).
Most of the pictures in the set were collected in the wild through mobile phone cameras.
Some are screenshots.
These pictures show various scenes, including street scenes, posters, menus, indoor scenes and screenshots of mobile applications.
## MEASUREMENT
The predicted time-consuming indicators on the four platforms are as follows:
| Long size(px) | T4(s) | V100(s) | Intel Xeon 6148(s) | Snapdragon 855(s) |
| :---------: | :-----: | :-------: | :------------------: | :-----------------: |
| 960 | 0.092 | 0.057 | 0.319 | 0.354 |
| 640 | 0.067 | 0.045 | 0.198 | 0.236 |
| 480 | 0.057 | 0.043 | 0.151 | 0.175 |
Explanation:
* The evaluation time-consuming stage is the complete stage from image input to result output, including image
pre-processing and post-processing.
* ```Intel Xeon 6148``` is the server-side CPU model. Intel MKL-DNN is used in the test to accelerate the CPU prediction speed.
To use this operation, you need to:
* Update to the latest version of PaddlePaddle: https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev
Please select the corresponding mkl version wheel package according to the CUDA version and Python version of your environment,
for example, CUDA10, Python3.7 environment, you should:
```
# Obtain the installation package
wget https://paddle-wheel.bj.bcebos.com/0.0.0-gpu-cuda10-cudnn7-mkl/paddlepaddle_gpu-0.0.0-cp37-cp37m-linux_x86_64.whl
# Installation
pip3.7 install paddlepaddle_gpu-0.0.0-cp37-cp37m-linux_x86_64.whl
```
* Use parameters ```--enable_mkldnn True``` to turn on the acceleration switch when making predictions
* ```Snapdragon 855``` is a mobile processing platform model.

View File

@ -0,0 +1,20 @@
# DATA ANNOTATION TOOLS
There are the commonly used data annotation tools, which will be continuously updated. Welcome to contribute tools~
### 1. labelImg
- Tool description: Rectangular label
- Tool address: https://github.com/tzutalin/labelImg
- Sketch diagram:
![labelimg](../datasets/labelimg.jpg)
### 2. roLabelImg
- Tool description: Label tool rewritten based on labelImg, supporting rotating rectangular label
- Tool address: https://github.com/cgvict/roLabelImg
- Sketch diagram:
![roLabelImg](../datasets/roLabelImg.png)
### 3. labelme
- Tool description: Support four points, polygons, circles and other labels
- Tool address: https://github.com/wkentaro/labelme
- Sketch diagram:
![labelme](../datasets/labelme.jpg)

View File

@ -0,0 +1,11 @@
# DATA SYNTHESIS TOOLS
In addition to open source data, users can also use synthesis tools to synthesize data.
There are the commonly used data synthesis tools, which will be continuously updated. Welcome to contribute tools~
* [Text_renderer](https://github.com/Sanster/text_renderer)
* [SynthText](https://github.com/ankush-me/SynthText)
* [SynthText_Chinese_version](https://github.com/JarveeLee/SynthText_Chinese_version)
* [TextRecognitionDataGenerator](https://github.com/Belval/TextRecognitionDataGenerator)
* [SynthText3D](https://github.com/MhLiao/SynthText3D)
* [UnrealText](https://github.com/Jyouhou/UnrealText/)

View File

@ -22,7 +22,7 @@ After decompressing the data set and downloading the annotation file, PaddleOCR/
└─ test_icdar2015_label.txt Test annotation of icdar dataset └─ test_icdar2015_label.txt Test annotation of icdar dataset
``` ```
The provided annotation file format is as follow: The provided annotation file format is as follow, seperated by "\t":
``` ```
" Image file name Image annotation information encoded by json.dumps" " Image file name Image annotation information encoded by json.dumps"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}] ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]
@ -57,27 +57,28 @@ tar xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models
``` ```
**START TRAINING** **START TRAINING**
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
``` ```
python3 tools/train.py -c configs/det/det_mv3_db.yml python3 tools/train.py -c configs/det/det_mv3_db.yml
``` ```
In the above instruction, use `-c` to select the training to use the configs/det/det_db_mv3.yml configuration file. In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [link](./config_en.md). For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
You can also use the `-o` parameter to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001 You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
``` ```
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001 python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
``` ```
**load trained model and conntinue training** **load trained model and conntinue training**
If you expect to load trained model and continue the training again, you can specify the `Global.checkpoints` parameter as the model path to be loaded. If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
For example: For example:
``` ```
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
``` ```
**Note**:The priority of Global.checkpoints is higher than the priority of Global.pretrain_weights, that is, when two parameters are specified at the same time, the model specified by Global.checkpoints will be loaded first. If the model path specified by Global.checkpoints is wrong, the one specified by Global.pretrain_weights will be loaded. **Note**:The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by Global.checkpoints will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
## EVALUATION ## EVALUATION
@ -86,34 +87,34 @@ PaddleOCR calculates three indicators for evaluating performance of OCR detectio
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml` Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
When evaluating, set post-processing parameters box_thresh=0.6, unclip_ratio=1.5. If you use different datasets, different models for training, these two parameters should be adjusted for better result. When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
``` ```
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
``` ```
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set Global.checkpoints to point to the saved parameter file. The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
Such as: Such as:
``` ```shell
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
``` ```
* Note: box_thresh and unclip_ratio are parameters required for DB post-processing, and not need to be set when evaluating the EAST model. * Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST model.
## TEST DETECTION RESULT ## TEST
Test the detection result on a single image: Test the detection result on a single image:
``` ```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy"
``` ```
When testing the DB model, adjust the post-processing threshold: When testing the DB model, adjust the post-processing threshold:
``` ```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
``` ```
Test the detection result on all images in the folder: Test the detection result on all images in the folder:
``` ```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy" python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy"
``` ```

View File

@ -0,0 +1,28 @@
# Handwritten OCR dataset
Here we have sorted out the commonly used handwritten OCR dataset datasets, which are being updated continuously. We welcome you to contribute datasets ~
- [Institute of automation, Chinese Academy of Sciences - handwritten Chinese dataset](#Institute of automation, Chinese Academy of Sciences - handwritten Chinese dataset)
- [NIST handwritten single character dataset - English](#NIST handwritten single character dataset - English)
<a name="Institute of automation, Chinese Academy of Sciences - handwritten Chinese dataset"></a>
## Institute of automation, Chinese Academy of Sciences - handwritten Chinese dataset
- **Data source**:http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
- **Data introduction**:
* It includes online and offline handwritten data,`HWDB1.0~1.2` has totally 3895135 handwritten single character samples, which belong to 7356 categories (7185 Chinese characters and 171 English letters, numbers and symbols);`HWDB2.0~2.2` has totally 5091 pages of images, which are divided into 52230 text lines and 1349414 words. All text and text samples are stored as grayscale images. Some sample words are shown below.
![](../datasets/CASIA_0.jpg)
- **Download address**:http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
- **使用建议**:Data for single character, white background, can form a large number of text lines for training. White background can be processed into transparent state, which is convenient to add various backgrounds. For the case of semantic needs, it is suggested to extract single character from real corpus to form text lines.
<a name="NIST handwritten single character dataset - English"></a>
## NIST handwritten single character dataset - English(NIST Handprinted Forms and Characters Database)
- **Data source**: [https://www.nist.gov/srd/nist-special-database-19](https://www.nist.gov/srd/nist-special-database-19)
- **Data introduction**: NIST19 dataset is suitable for handwritten document and character recognition model training. It is extracted from the handwritten sample form of 3600 authors and contains 810000 character images in total. Nine of them are shown below.
![](../datasets/nist_demo.png)
- **Download address**: [https://www.nist.gov/srd/nist-special-database-19](https://www.nist.gov/srd/nist-special-database-19)

View File

@ -1,5 +1,5 @@
# PREDICTION FROM INFERENCE MODEL # Reasoning based on Python prediction engine
The inference model (the model saved by fluid.io.save_inference_model) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment. The inference model (the model saved by fluid.io.save_inference_model) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
@ -18,7 +18,13 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar &
``` ```
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command: The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
``` ```
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/det_mv3_db/best_accuracy Global.save_inference_dir=./inference/det_db/ # -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/det_mv3_db/best_accuracy \
Global.save_inference_dir=./inference/det_db/
``` ```
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` and `Global.save_inference_dir` parameters in the configuration file. When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` and `Global.save_inference_dir` parameters in the configuration file.
`Global.checkpoints` points to the model parameter file saved during training, and `Global.save_inference_dir` is the directory where the generated inference model is saved. `Global.checkpoints` points to the model parameter file saved during training, and `Global.save_inference_dir` is the directory where the generated inference model is saved.
@ -38,6 +44,11 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar
The recognition model is converted to the inference model in the same way as the detection, as follows: The recognition model is converted to the inference model in the same way as the detection, as follows:
``` ```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints=./ch_lite/rec_mv3_crnn/best_accuracy \ python3 tools/export_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints=./ch_lite/rec_mv3_crnn/best_accuracy \
Global.save_inference_dir=./inference/rec_crnn/ Global.save_inference_dir=./inference/rec_crnn/
``` ```
@ -53,7 +64,8 @@ After the conversion is successful, there are two files in the directory:
## TEXT DETECTION MODEL INFERENCE ## TEXT DETECTION MODEL INFERENCE
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model. Because EAST and DB algorithms are very different, when inference, it is necessary to adapt the EAST text detection algorithm by passing in corresponding parameters. The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE ### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE

View File

@ -3,12 +3,14 @@
After testing, paddleocr can run on glibc 2.23. You can also test other glibc versions or install glic 2.23 for the best compatibility. After testing, paddleocr can run on glibc 2.23. You can also test other glibc versions or install glic 2.23 for the best compatibility.
PaddleOCR working environment: PaddleOCR working environment:
- PaddlePaddle 1.7+ - PaddlePaddle1.7
- python3 - python3
- glibc 2.23 - glibc 2.23
- cuDNN 7.6+ (GPU)
It is recommended to use the docker provided by us to run PaddleOCR, please refer to the use of docker [link](https://docs.docker.com/get-started/). It is recommended to use the docker provided by us to run PaddleOCR, please refer to the use of docker [link](https://docs.docker.com/get-started/).
*If you want to directly run the prediction code on mac or windows, you can start from step 2.*
1. (Recommended) Prepare a docker environment. The first time you use this image, it will be downloaded automatically. Please be patient. 1. (Recommended) Prepare a docker environment. The first time you use this image, it will be downloaded automatically. Please be patient.
``` ```
# Switch to the working directory # Switch to the working directory
@ -47,7 +49,7 @@ docker images
hub.baidubce.com/paddlepaddle/paddle latest-gpu-cuda9.0-cudnn7-dev f56310dcc829 hub.baidubce.com/paddlepaddle/paddle latest-gpu-cuda9.0-cudnn7-dev f56310dcc829
``` ```
2. Install PaddlePaddle Fluid v1.7 2. Install PaddlePaddle Fluid v1.7 (the higher version is not supported yet, the adaptation work is in progress)
``` ```
pip3 install --upgrade pip pip3 install --upgrade pip
@ -56,6 +58,9 @@ python3 -m pip install paddlepaddle-gpu==1.7.2.post97 -i https://pypi.tuna.tsing
# If you have cuda10 installed on your machine, please run the following command to install # If you have cuda10 installed on your machine, please run the following command to install
python3 -m pip install paddlepaddle-gpu==1.7.2.post107 -i https://pypi.tuna.tsinghua.edu.cn/simple python3 -m pip install paddlepaddle-gpu==1.7.2.post107 -i https://pypi.tuna.tsinghua.edu.cn/simple
# If you only have cpu on your machine, please run the following command to install
python3 -m pip install paddlepaddle==1.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
``` ```
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation. For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.

View File

@ -0,0 +1,98 @@
# Quick start of Chinese OCR model
## 1. Prepare for the environment
Please refer to [quick installation](./installation_en.md) to configure the PaddleOCR operating environment.
## 2.inference models
| Name | Introduction | Detection model | Recognition model | Recognition model with space support |
|-|-|-|-|-|
|chinese_db_crnn_mobile| Ultra-lightweight Chinese OCR model |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server| Universal Chinese OCR model |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
* If wget is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, and uncompress it and place it in the corresponding directory.
Copy the download address of the `inference model` for detection and recognition in the table above, and uncompress them.
```
mkdir inference && cd inference
# Download the detection model and unzip
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# Download the recognition model and unzip
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```
Take the ultra-lightweight model as an example:
```
mkdir inference && cd inference
# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
After decompression, the file structure should be as follows:
```
|-inference
|-ch_rec_mv3_crnn
|- model
|- params
|-ch_det_mv3_db
|- model
|- params
...
```
## 3. Single image or image set prediction
* The following code implements text detection and recognition process. When performing prediction, you need to specify the path of a single image or image set through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, and the parameter `rec_model_dir` specifies the path to identify the inference model. The visual results are saved to the `./inference_results` folder by default.
```bash
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# Predict imageset specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# If you want to use the CPU for prediction, you need to set the use_gpu parameter to False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```
- Universal Chinese OCR model
Please follow the above steps to download the corresponding models and update the relevant parameters, The example is as follows.
```
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```
- Universal Chinese OCR model with the support of space
Please follow the above steps to download the corresponding models and update the relevant parameters, The example is as follows.
* Note: Please update the source code to the latest version and add parameters `--use_space_char=True`
```
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/" --use_space_char=True
```
For more text detection and recognition tandem reasoning, please refer to the document tutorial
: [Inference with Python inference engine](./inference_en.md)。
In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
- [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md)
- [Service deployment](./serving_en.md)
- [End-to-end deployment](../../deploy/lite/readme_en.md)

View File

@ -96,6 +96,16 @@ You can use them if needed.
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`. To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.
- Custom dictionary
If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.
- Add space category
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`.
**Note: use_space_char only takes effect when character_type=ch**
### TRAINING ### TRAINING
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example: PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:
@ -122,6 +132,17 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
``` ```
- Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.
Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
- Training
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process. PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.
If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training. If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

View File

@ -0,0 +1,55 @@
# REFERENCE
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```

174
doc/doc_en/serving_en.md Normal file
View File

@ -0,0 +1,174 @@
# Service deployment
PaddleOCR provides 2 service deployment methods:
- Based on **HubServing**Has been integrated into PaddleOCR ([code](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/hubserving)). Please follow this tutorial.
- Based on **PaddleServing**See PaddleServing official website for details ([demo](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/ocr)). Follow-up will also be integrated into PaddleOCR.
The service deployment directory includes three service packages: detection, recognition, and two-stage series connection. Select the corresponding service package to install and start service according to your needs. The directory is as follows:
```
deploy/hubserving/
└─ ocr_det detection module service package
└─ ocr_rec recognition module service package
└─ ocr_system two-stage series connection service package
```
Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows:
```
deploy/hubserving/ocr_system/
└─ __init__.py Empty file, required
└─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
└─ module.py Main module file, required, contains the complete logic of the service
└─ params.py Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```
## Quick start service
The following steps take the 2-stage series service as an example. If only the detection service or recognition service is needed, replace the corresponding file path.
### 1. Prepare the environment
```shell
# Install paddlehub
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# Set environment variables
export PYTHONPATH=.
```
### 2. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs. Such as:
Install the detection service module:
```shell
hub install deploy/hubserving/ocr_det/
```
Or, install the recognition service module:
```shell
hub install deploy/hubserving/ocr_rec/
```
Or, install the 2-stage series service module:
```shell
hub install deploy/hubserving/ocr_system/
```
### 3. Start service
#### Way 1. Start with command line parameters (CPU only)
**start command**
```shell
$ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
--port XXXX \
--use_multiprocess \
--workers \
```
**parameters**
|parameters|usage|
|-|-|
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
For example, start the 2-stage series service:
```shell
hub serving start -m ocr_system
```
This completes the deployment of a service API, using the default port number 8866.
#### Way 2. Start with configuration fileCPU、GPU
**start command**
```shell
hub serving start --config/-c config.json
```
Wherein, the format of `config.json` is as follows:
```python
{
"modules_info": {
"ocr_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true
},
"predict_args": {
}
}
},
"port": 8868,
"use_multiprocess": false,
"workers": 2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them, **when `use_gpu` is `true`, it means that the GPU is used to start the service**.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
**Note:**
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
For example, use GPU card No. 3 to start the 2-stage series service:
```shell
export CUDA_VISIBLE_DEVICES=3
hub serving start -c deploy/hubserving/ocr_system/config.json
```
## Send prediction requests
After the service starts, you can use the following command to send a prediction request to obtain the prediction result:
```shell
python tools/test_hubserving.py server_url image_path
```
Two parameters need to be passed to the script:
- **server_url**service addressformat of which is
`http://[ip_address]:[port]/predict/[module_name]`
For example, if the detection, recognition and 2-stage serial services are started with provided configuration files, the respective `server_url` would be:
`http://127.0.0.1:8866/predict/ocr_det`
`http://127.0.0.1:8867/predict/ocr_rec`
`http://127.0.0.1:8868/predict/ocr_system`
- **image_path**Test image path, can be a single image path or an image directory path
**Eg.**
```shell
python tools/test_hubserving.py http://127.0.0.1:8868/predict/ocr_system ./doc/imgs/
```
## Returned result format
The returned result is a list. Each item in the list is a dict. The dict may contain three fields. The information is as follows:
|field name|data type|description|
|-|-|-|
|text|str|text content|
|confidence|float|text recognition confidence|
|text_region|list|text location coordinates|
The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`. The details are as follows:
|field name/module name|ocr_det|ocr_rec|ocr_system|
|-|-|-|-|
|text||✔|✔|
|confidence||✔|✔|
|text_region|✔||✔|
**Note** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.
## User defined service module modification
If you need to modify the service logic, the following steps are generally required (take the modification of `ocr_system` for example):
- 1. Stop service
```shell
hub serving stop --port/-p XXXX
```
- 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test.
- 3. Uninstall old service module
```shell
hub uninstall ocr_system
```
- 4. Install modified service module
```shell
hub install deploy/hubserving/ocr_system/
```
- 5. Restart service
```shell
hub serving start -m ocr_system
```

68
doc/doc_en/tricks_en.md Normal file
View File

@ -0,0 +1,68 @@
## Tricks
Here we have sorted out some Chinese OCR training and prediction tricks, which are being updated continuously. You are welcome to contribute more OCR tricks ~
- [Replace Backbone Network](#ReplaceBackboneNetwork)
- [Long Chinese Text Recognition](#LongChineseTextRecognition)
- [Space Recognition](#SpaceRecognition)
<a name="ReplaceBackboneNetwork"></a>
#### 1、Replace Backbone Network
- **Problem Description**
At present, ResNet_vd series and MobileNetV3 series are the backbone networks used in PaddleOCR, whether replacing the other backbone networks will help to improve the accuracy? What should be paid attention to when replacing?
- **Tips**
- Whether text detection or text recognition, the choice of backbone network is a trade-off between prediction effect and prediction efficiency. Generally, a larger backbone network is selected, e.g. ResNet101_vd, then the performance of the detection or recognition is more accurate, but the time cost will increase accordingly. And a smaller backbone network is selected, e.g. MobileNetV3_small_x0_35, the prediction speed is faster, but the accuracy of detection or recognition will be reduced. Fortunately, the detection or recognition effect of different backbone networks is positively correlated with the performance of ImageNet 1000 classification task. [**PaddleClas**](https://github.com/PaddlePaddle/PaddleClas/blob/master/README_en.md) have sorted out the 23 series of classification network structures, such as ResNet_vd、Res2Net、HRNet、MobileNetV3、GhostNet. It provides the top1 accuracy of classification, the time cost of GPU(V100 and T4) and CPU(SD 855), and the 117 pretrained models [**download addresses**](https://paddleclas-en.readthedocs.io/en/latest/models/models_intro_en.html).
- Similar as the 4 stages of ResNet, the replacement of text detection backbone network is to determine those four stages to facilitate the integration of FPN like the object detection heads. In addition, for the text detection problem, the pre trained model in ImageNet1000 can accelerate the convergence and improve the accuracy.
- In order to replace the backbone network of text recognition, we need to pay attention to the descending position of network width and height stride. Since the ratio between width and height is large in chinese text recognition, the frequency of height decrease is less and the frequency of width decrease is more. You can refer the [modifies of MobileNetV3](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/modeling/backbones/rec_mobilenet_v3.py) in PaddleOCR.
<a name="LongChineseTextRecognition"></a>
#### 2、Long Chinese Text Recognition
- **Problem Description**
The maximum resolution of Chinese recognition model during training is [3,32,320], if the text image to be recognized is too long, as shown in the figure below, how to adapt?
<div align="center">
<img src="../tricks/long_text_examples.jpg" width="600">
</div>
- **Tips**
During the training, the training samples are not directly resized to [3,32,320]. At first, the height of samples are resized to 32 and keep the ratio between the width and the height. When the width is less than 320, the excess parts are padding 0. Besides, when the ratio between the width and the height of the samples is larger than 10, these samples will be ignored. When the prediction for one image, do as above, but do not limit the max ratio between the width and the height. When the prediction for an images batch, do as training, but the resized target width is the longest width of the images in the batch. [Code as following](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/tools/infer/predict_rec.py)
```
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
if self.character_type == "ch":
imgW = int((32 * max_wh_ratio))
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
```
<a name="SpaceRecognition"></a>
#### 3、Space Recognition
- **Problem Description**
As shown in the figure below, for Chinese and English mixed scenes, in order to facilitate reading and using the recognition results, it is often necessary to recognize the spaces between words. How can this situation be adapted?
<div align="center">
<img src="../imgs_results/chinese_db_crnn_server/en_paper.jpg" width="600">
</div>
- **Tips**
There are two possible methods for space recognition. (1) Optimize the text detection. For spliting the text at the space in detection results, it needs to divide the text line with space into many segments when label the data for detection. (2) Optimize the text recognition. The space character is introduced into the recognition dictionary. Label the blank line in the training data for text recognition. In addition, we can also concat multiple word lines to synthesize the training data with spaces. PaddleOCR currently uses the second method.

View File

@ -1,5 +1,13 @@
# RECENT UPDATES # RECENT UPDATES
- 2020.7.15, Add mobile App demo , support both iOS and Android ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the deployment ability, add the C + + inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight Chinese OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
- 2020.7.9 Add a new model to support recognize the character "space".
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
- 2020.6.8 Add [datasets](./doc/doc_en/datasets_en.md) and keep updating
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.6.5 Support exporting `attention` model to `inference_model` - 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score - 2020.6.5 Support separate prediction and recognition, output result score
- 2020.5.30 Provide Lightweight Chinese OCR online experience - 2020.5.30 Provide Lightweight Chinese OCR online experience

View File

@ -0,0 +1,79 @@
# Vertical multi-language OCR dataset
Here we have sorted out the commonly used vertical multi-language OCR dataset datasets, which are being updated continuously. We welcome you to contribute datasets
- [Chinese urban license plate dataset](#Chinese urban license plate dataset)
- [Bank credit card dataset](#Bank credit card dataset)
- [Captcha dataset-Captcha](#Captcha dataset-Captcha)
- [multi-language dataset](#multi-language dataset)
<a name="Chinese urban license plate dataset"></a>
## Chinese urban license plate dataset
- **Data source**[https://github.com/detectRecog/CCPD](https://github.com/detectRecog/CCPD)
- **Data introduction**: It contains more than 250000 vehicle license plate images and vehicle license plate detection and recognition information labeling. It contains the following license plate image information in different scenes.
* CCPD-Base: General license plate picture
* CCPD-DB: The brightness of license plate area is bright, dark or uneven
* CCPD-FN: The license plate is farther or closer to the camera location
* CCPD-Rotate: License plate includes rotation (horizontal 20\~50 degrees, vertical-10\~10 degrees)
* CCPD-Tilt: License plate includes rotation (horizontal 15\~45 degrees, vertical 15\~45 degrees)
* CCPD-Blur: The license plate contains blurring due to camera lens jitter
* CCPD-Weather: The license plate is photographed on rainy, snowy or foggy days
* CCPD-Challenge: So far, some of the most challenging images in license plate detection and recognition tasks
* CCPD-NP: Pictures of new cars without license plates.
![](../datasets/ccpd_demo.png)
- **Download address**
* Baidu cloud download address (extracted code is hm0U): [https://pan.baidu.com/s/1i5AOjAbtkwb17Zy-NQGqkw](https://pan.baidu.com/s/1i5AOjAbtkwb17Zy-NQGqkw)
* Google drive download address:[https://drive.google.com/file/d/1rdEsCUcIUaYOVRkx5IMTRNA7PcGMmSgc/view](https://drive.google.com/file/d/1rdEsCUcIUaYOVRkx5IMTRNA7PcGMmSgc/view)
<a name="Bank credit card dataset"></a>
## Bank credit card dataset
- **Data source**: [https://www.kesci.com/home/dataset/5954cf1372ead054a5e25870](https://www.kesci.com/home/dataset/5954cf1372ead054a5e25870)
- **Data introduction**: There are three types of training data
* 1.Sample card data of China Merchants Bank: including card image data and annotation data, a total of 618 pictures
* 2.Single character data: including pictures and annotation data, 37 pictures in total.
* 3.There are only other bank cards, no more detailed information, a total of 50 pictures.
* The demo image is shown as follows. The annotation information is stored in excel, and the demo image below is marked as
* Top 8 card number: 62257583
* Card type: card of our bank
* End of validity: 07/41
* Chinese phonetic alphabet of card users: MICHAEL
![](../datasets/cmb_demo.jpg)
- **Download address**: [https://cdn.kesci.com/cmb2017-2.zip](https://cdn.kesci.com/cmb2017-2.zip)
<a name="Captcha dataset-Captcha"></a>
## Captcha dataset-Captcha
- **Data source**: [https://github.com/lepture/captcha](https://github.com/lepture/captcha)
- **Data introduction**: This is a toolkit for data synthesis. You can output captcha images according to the input text. Use the toolkit to generate several demo images as follows.
![](../datasets/captcha_demo.png)
- **Download address**: The dataset is generated and has no download address.
<a name="multi-language dataset"></a>
## multi-language dataset(Multi-lingual scene text detection and recognition)
- **Data source**: [https://rrc.cvc.uab.es/?ch=15&com=downloads](https://rrc.cvc.uab.es/?ch=15&com=downloads)
- **Data introduction**: Multi language detection dataset MLT contains both language recognition and detection tasks.
* In the detection task, the training set contains 10000 images in 10 languages, and each language contains 1000 training images. The test set contains 10000 images.
* In the recognition task, the training set contains 111998 samples.
- **Download address**: The training set is large and can be downloaded in two parts. It can only be downloaded after registering on the website:
[https://rrc.cvc.uab.es/?ch=15&com=downloads](https://rrc.cvc.uab.es/?ch=15&com=downloads)

View File

@ -0,0 +1,71 @@
# Visualization
- [Chinese/English OCR Visualization (Space_support )](#Space_support)
- [Ultra-lightweight Chinese/English OCR Visualization](#Ultra-lightweight)
- [General Chinese/English OCR Visualization](#General)
<a name="Space_support"></a>
## Chinese/English OCR Visualization (Space_support )
### Ultra-lightweight Model
<div align="center">
<img src="../imgs_results/img_11.jpg" width="800">
</div>
### General OCR Model
<div align="center">
<img src="../imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
<a name="Ultra-lightweight"></a>
## Ultra-lightweight Chinese/English OCR Visualization
<div align="center">
<img src="../imgs_results/1.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/7.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/12.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/4.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/6.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/9.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/16.png" width="800">
</div>
<div align="center">
<img src="../imgs_results/22.jpg" width="800">
</div>
<a name="General"></a>
## General Chinese/English OCR Visualization
<div align="center">
<img src="../imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/chinese_db_crnn_server/2.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/chinese_db_crnn_server/8.jpg" width="800">
</div>