add eval mode
This commit is contained in:
parent
fb5f7f5eb4
commit
e2b84da866
|
@ -62,6 +62,7 @@ PostProcess:
|
|||
mode: fast # fast or slow two ways
|
||||
Metric:
|
||||
name: E2EMetric
|
||||
mode: A # A or B
|
||||
gt_mat_dir: ./train_data/total_text/gt # the dir of gt_mat
|
||||
character_dict_path: ppocr/utils/ic15_dict.txt
|
||||
main_indicator: f_score_e2e
|
||||
|
@ -76,7 +77,7 @@ Train:
|
|||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- E2ELabelEncode:
|
||||
- E2ELabelEncode_train:
|
||||
- PGProcessTrain:
|
||||
batch_size: 14 # same as loader: batch_size_per_card
|
||||
min_crop_size: 24
|
||||
|
@ -99,6 +100,7 @@ Eval:
|
|||
- DecodeImage: # load image
|
||||
img_mode: RGB
|
||||
channel_first: False
|
||||
- E2ELabelEncode_test:
|
||||
- E2EResizeForTest:
|
||||
max_side_len: 768
|
||||
- NormalizeImage:
|
||||
|
@ -108,7 +110,7 @@ Eval:
|
|||
order: 'hwc'
|
||||
- ToCHWImage:
|
||||
- KeepKeys:
|
||||
keep_keys: [ 'image', 'shape', 'img_id']
|
||||
keep_keys: [ 'image', 'shape', 'polys', 'texts', 'tags', 'img_id']
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
|
|
|
@ -187,7 +187,33 @@ class CTCLabelEncode(BaseRecLabelEncode):
|
|||
return dict_character
|
||||
|
||||
|
||||
class E2ELabelEncode(object):
|
||||
class E2ELabelEncode_test(BaseRecLabelEncode):
|
||||
def __init__(self,
|
||||
max_text_length,
|
||||
character_dict_path=None,
|
||||
character_type='EN',
|
||||
use_space_char=False,
|
||||
**kwargs):
|
||||
super(E2ELabelEncode_test,
|
||||
self).__init__(max_text_length, character_dict_path,
|
||||
character_type, use_space_char)
|
||||
|
||||
def __call__(self, data):
|
||||
texts = data['texts']
|
||||
temp_texts = []
|
||||
for text in texts:
|
||||
text = text.lower()
|
||||
text = self.encode(text)
|
||||
if text is None:
|
||||
return None
|
||||
text = text + [36] * (self.max_text_len - len(text)
|
||||
) # use 36 to pad
|
||||
temp_texts.append(text)
|
||||
data['texts'] = np.array(temp_texts)
|
||||
return data
|
||||
|
||||
|
||||
class E2ELabelEncode_train(object):
|
||||
def __init__(self, **kwargs):
|
||||
pass
|
||||
|
||||
|
|
|
@ -18,16 +18,18 @@ from __future__ import print_function
|
|||
|
||||
__all__ = ['E2EMetric']
|
||||
|
||||
from ppocr.utils.e2e_metric.Deteval import get_socre, combine_results
|
||||
from ppocr.utils.e2e_metric.Deteval import get_socre_A, get_socre_B, combine_results
|
||||
from ppocr.utils.e2e_utils.extract_textpoint_slow import get_dict
|
||||
|
||||
|
||||
class E2EMetric(object):
|
||||
def __init__(self,
|
||||
mode,
|
||||
gt_mat_dir,
|
||||
character_dict_path,
|
||||
main_indicator='f_score_e2e',
|
||||
**kwargs):
|
||||
self.mode = mode
|
||||
self.gt_mat_dir = gt_mat_dir
|
||||
self.label_list = get_dict(character_dict_path)
|
||||
self.max_index = len(self.label_list)
|
||||
|
@ -35,12 +37,45 @@ class E2EMetric(object):
|
|||
self.reset()
|
||||
|
||||
def __call__(self, preds, batch, **kwargs):
|
||||
img_id = batch[2][0]
|
||||
if self.mode == 'A':
|
||||
gt_polyons_batch = batch[2]
|
||||
temp_gt_strs_batch = batch[3]
|
||||
ignore_tags_batch = batch[4]
|
||||
gt_strs_batch = []
|
||||
|
||||
for temp_list in temp_gt_strs_batch:
|
||||
t = ""
|
||||
for index in temp_list:
|
||||
if index < self.max_index:
|
||||
t += self.label_list[index]
|
||||
gt_strs_batch.append(t)
|
||||
|
||||
for pred, gt_polyons, gt_strs, ignore_tags in zip(
|
||||
[preds], [gt_polyons_batch], [gt_strs_batch],
|
||||
ignore_tags_batch):
|
||||
# prepare gt
|
||||
gt_info_list = [{
|
||||
'points': gt_polyon,
|
||||
'text': gt_str,
|
||||
'ignore': ignore_tag
|
||||
} for gt_polyon, gt_str, ignore_tag in
|
||||
zip(gt_polyons, gt_strs, ignore_tags)]
|
||||
# prepare det
|
||||
e2e_info_list = [{
|
||||
'points': det_polyon,
|
||||
'texts': pred_str
|
||||
} for det_polyon, pred_str in
|
||||
zip(pred['points'], pred['texts'])]
|
||||
|
||||
result = get_socre_A(gt_info_list, e2e_info_list)
|
||||
self.results.append(result)
|
||||
else:
|
||||
img_id = batch[5][0]
|
||||
e2e_info_list = [{
|
||||
'points': det_polyon,
|
||||
'texts': pred_str
|
||||
} for det_polyon, pred_str in zip(preds['points'], preds['texts'])]
|
||||
result = get_socre(self.gt_mat_dir, img_id, e2e_info_list)
|
||||
result = get_socre_B(self.gt_mat_dir, img_id, e2e_info_list)
|
||||
self.results.append(result)
|
||||
|
||||
def get_metric(self):
|
||||
|
|
|
@ -17,7 +17,144 @@ import scipy.io as io
|
|||
from ppocr.utils.e2e_metric.polygon_fast import iod, area_of_intersection, area
|
||||
|
||||
|
||||
def get_socre(gt_dir, img_id, pred_dict):
|
||||
def get_socre_A(gt_dir, pred_dict):
|
||||
allInputs = 1
|
||||
|
||||
def input_reading_mod(pred_dict):
|
||||
"""This helper reads input from txt files"""
|
||||
det = []
|
||||
n = len(pred_dict)
|
||||
for i in range(n):
|
||||
points = pred_dict[i]['points']
|
||||
text = pred_dict[i]['texts']
|
||||
point = ",".join(map(str, points.reshape(-1, )))
|
||||
det.append([point, text])
|
||||
return det
|
||||
|
||||
def gt_reading_mod(gt_dict):
|
||||
"""This helper reads groundtruths from mat files"""
|
||||
gt = []
|
||||
n = len(gt_dict)
|
||||
for i in range(n):
|
||||
points = gt_dict[i]['points'].tolist()
|
||||
h = len(points)
|
||||
text = gt_dict[i]['text']
|
||||
xx = [
|
||||
np.array(
|
||||
['x:'], dtype='<U2'), 0, np.array(
|
||||
['y:'], dtype='<U2'), 0, np.array(
|
||||
['#'], dtype='<U1'), np.array(
|
||||
['#'], dtype='<U1')
|
||||
]
|
||||
t_x, t_y = [], []
|
||||
for j in range(h):
|
||||
t_x.append(points[j][0])
|
||||
t_y.append(points[j][1])
|
||||
xx[1] = np.array([t_x], dtype='int16')
|
||||
xx[3] = np.array([t_y], dtype='int16')
|
||||
if text != "":
|
||||
xx[4] = np.array([text], dtype='U{}'.format(len(text)))
|
||||
xx[5] = np.array(['c'], dtype='<U1')
|
||||
gt.append(xx)
|
||||
return gt
|
||||
|
||||
def detection_filtering(detections, groundtruths, threshold=0.5):
|
||||
for gt_id, gt in enumerate(groundtruths):
|
||||
if (gt[5] == '#') and (gt[1].shape[1] > 1):
|
||||
gt_x = list(map(int, np.squeeze(gt[1])))
|
||||
gt_y = list(map(int, np.squeeze(gt[3])))
|
||||
for det_id, detection in enumerate(detections):
|
||||
detection_orig = detection
|
||||
detection = [float(x) for x in detection[0].split(',')]
|
||||
detection = list(map(int, detection))
|
||||
det_x = detection[0::2]
|
||||
det_y = detection[1::2]
|
||||
det_gt_iou = iod(det_x, det_y, gt_x, gt_y)
|
||||
if det_gt_iou > threshold:
|
||||
detections[det_id] = []
|
||||
|
||||
detections[:] = [item for item in detections if item != []]
|
||||
return detections
|
||||
|
||||
def sigma_calculation(det_x, det_y, gt_x, gt_y):
|
||||
"""
|
||||
sigma = inter_area / gt_area
|
||||
"""
|
||||
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
||||
area(gt_x, gt_y)), 2)
|
||||
|
||||
def tau_calculation(det_x, det_y, gt_x, gt_y):
|
||||
if area(det_x, det_y) == 0.0:
|
||||
return 0
|
||||
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
||||
area(det_x, det_y)), 2)
|
||||
|
||||
##############################Initialization###################################
|
||||
# global_sigma = []
|
||||
# global_tau = []
|
||||
# global_pred_str = []
|
||||
# global_gt_str = []
|
||||
###############################################################################
|
||||
|
||||
for input_id in range(allInputs):
|
||||
if (input_id != '.DS_Store') and (input_id != 'Pascal_result.txt') and (
|
||||
input_id != 'Pascal_result_curved.txt') and (input_id != 'Pascal_result_non_curved.txt') and (
|
||||
input_id != 'Deteval_result.txt') and (input_id != 'Deteval_result_curved.txt') \
|
||||
and (input_id != 'Deteval_result_non_curved.txt'):
|
||||
detections = input_reading_mod(pred_dict)
|
||||
groundtruths = gt_reading_mod(gt_dir)
|
||||
detections = detection_filtering(
|
||||
detections,
|
||||
groundtruths) # filters detections overlapping with DC area
|
||||
dc_id = []
|
||||
for i in range(len(groundtruths)):
|
||||
if groundtruths[i][5] == '#':
|
||||
dc_id.append(i)
|
||||
cnt = 0
|
||||
for a in dc_id:
|
||||
num = a - cnt
|
||||
del groundtruths[num]
|
||||
cnt += 1
|
||||
|
||||
local_sigma_table = np.zeros((len(groundtruths), len(detections)))
|
||||
local_tau_table = np.zeros((len(groundtruths), len(detections)))
|
||||
local_pred_str = {}
|
||||
local_gt_str = {}
|
||||
|
||||
for gt_id, gt in enumerate(groundtruths):
|
||||
if len(detections) > 0:
|
||||
for det_id, detection in enumerate(detections):
|
||||
detection_orig = detection
|
||||
detection = [float(x) for x in detection[0].split(',')]
|
||||
detection = list(map(int, detection))
|
||||
pred_seq_str = detection_orig[1].strip()
|
||||
det_x = detection[0::2]
|
||||
det_y = detection[1::2]
|
||||
gt_x = list(map(int, np.squeeze(gt[1])))
|
||||
gt_y = list(map(int, np.squeeze(gt[3])))
|
||||
gt_seq_str = str(gt[4].tolist()[0])
|
||||
|
||||
local_sigma_table[gt_id, det_id] = sigma_calculation(
|
||||
det_x, det_y, gt_x, gt_y)
|
||||
local_tau_table[gt_id, det_id] = tau_calculation(
|
||||
det_x, det_y, gt_x, gt_y)
|
||||
local_pred_str[det_id] = pred_seq_str
|
||||
local_gt_str[gt_id] = gt_seq_str
|
||||
|
||||
global_sigma = local_sigma_table
|
||||
global_tau = local_tau_table
|
||||
global_pred_str = local_pred_str
|
||||
global_gt_str = local_gt_str
|
||||
|
||||
single_data = {}
|
||||
single_data['sigma'] = global_sigma
|
||||
single_data['global_tau'] = global_tau
|
||||
single_data['global_pred_str'] = global_pred_str
|
||||
single_data['global_gt_str'] = global_gt_str
|
||||
return single_data
|
||||
|
||||
|
||||
def get_socre_B(gt_dir, img_id, pred_dict):
|
||||
allInputs = 1
|
||||
|
||||
def input_reading_mod(pred_dict):
|
||||
|
|
Loading…
Reference in New Issue