update test_ci to v6
This commit is contained in:
parent
b10f12a292
commit
e4a939cbbc
|
@ -1,13 +1,12 @@
|
||||||
model_name:ocr_det
|
model_name:ocr_det
|
||||||
python:python3.7
|
python:python3.7
|
||||||
gpu_list:0|0,1
|
gpu_list:0|0,1
|
||||||
Global.auto_cast:False
|
Global.auto_cast:null
|
||||||
Global.epoch_num:10
|
Global.epoch_num:10
|
||||||
Global.save_model_dir:./output/
|
Global.save_model_dir:./output/
|
||||||
Global.save_inference_dir:./output/
|
|
||||||
Train.loader.batch_size_per_card:
|
Train.loader.batch_size_per_card:
|
||||||
Global.use_gpu
|
Global.use_gpu:
|
||||||
Global.pretrained_model
|
Global.pretrained_model:null
|
||||||
|
|
||||||
trainer:norm|pact
|
trainer:norm|pact
|
||||||
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||||
|
@ -17,6 +16,8 @@ distill_train:null
|
||||||
|
|
||||||
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
|
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
|
||||||
|
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.checkpoints:
|
||||||
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||||
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
|
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||||
fpgm_export:deploy/slim/prune/export_prune_model.py
|
fpgm_export:deploy/slim/prune/export_prune_model.py
|
||||||
|
@ -29,7 +30,6 @@ inference:tools/infer/predict_det.py
|
||||||
--rec_batch_num:1
|
--rec_batch_num:1
|
||||||
--use_tensorrt:True|False
|
--use_tensorrt:True|False
|
||||||
--precision:fp32|fp16|int8
|
--precision:fp32|fp16|int8
|
||||||
--det_model_dir
|
--det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||||
--image_dir
|
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||||
--save_log_path
|
--save_log_path:./test/output/
|
||||||
|
|
||||||
|
|
|
@ -26,8 +26,10 @@ IFS=$'\n'
|
||||||
# The training params
|
# The training params
|
||||||
model_name=$(func_parser_value "${lines[0]}")
|
model_name=$(func_parser_value "${lines[0]}")
|
||||||
train_model_list=$(func_parser_value "${lines[0]}")
|
train_model_list=$(func_parser_value "${lines[0]}")
|
||||||
|
|
||||||
trainer_list=$(func_parser_value "${lines[10]}")
|
trainer_list=$(func_parser_value "${lines[10]}")
|
||||||
|
|
||||||
|
|
||||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
|
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
|
||||||
MODE=$2
|
MODE=$2
|
||||||
# prepare pretrained weights and dataset
|
# prepare pretrained weights and dataset
|
||||||
|
@ -62,8 +64,8 @@ else
|
||||||
rm -rf ./train_data/icdar2015
|
rm -rf ./train_data/icdar2015
|
||||||
wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
|
wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
|
||||||
if [ ${model_name} = "ocr_det" ]; then
|
if [ ${model_name} = "ocr_det" ]; then
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_det_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
else
|
else
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_rec_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_rec_train"
|
||||||
|
@ -94,7 +96,7 @@ for train_model in ${train_model_list[*]}; do
|
||||||
# eval
|
# eval
|
||||||
for slim_trainer in ${trainer_list[*]}; do
|
for slim_trainer in ${trainer_list[*]}; do
|
||||||
if [ ${slim_trainer} = "norm" ]; then
|
if [ ${slim_trainer} = "norm" ]; then
|
||||||
if [ ${model_name} = "ocr_det" ]; then
|
if [ ${model_name} = "det" ]; then
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_det_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_det_train"
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
|
@ -104,7 +106,7 @@ for train_model in ${train_model_list[*]}; do
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
fi
|
fi
|
||||||
elif [ ${slim_trainer} = "pact" ]; then
|
elif [ ${slim_trainer} = "pact" ]; then
|
||||||
if [ ${model_name} = "ocr_det" ]; then
|
if [ ${model_name} = "det" ]; then
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train"
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
|
@ -114,7 +116,7 @@ for train_model in ${train_model_list[*]}; do
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
fi
|
fi
|
||||||
elif [ ${slim_trainer} = "distill" ]; then
|
elif [ ${slim_trainer} = "distill" ]; then
|
||||||
if [ ${model_name} = "ocr_det" ]; then
|
if [ ${model_name} = "det" ]; then
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train"
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
|
@ -124,7 +126,7 @@ for train_model in ${train_model_list[*]}; do
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
fi
|
fi
|
||||||
elif [ ${slim_trainer} = "fpgm" ]; then
|
elif [ ${slim_trainer} = "fpgm" ]; then
|
||||||
if [ ${model_name} = "ocr_det" ]; then
|
if [ ${model_name} = "det" ]; then
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train"
|
eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train"
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
|
||||||
|
|
140
test/test.sh
140
test/test.sh
|
@ -41,59 +41,51 @@ gpu_list=$(func_parser_value "${lines[2]}")
|
||||||
autocast_list=$(func_parser_value "${lines[3]}")
|
autocast_list=$(func_parser_value "${lines[3]}")
|
||||||
autocast_key=$(func_parser_key "${lines[3]}")
|
autocast_key=$(func_parser_key "${lines[3]}")
|
||||||
epoch_key=$(func_parser_key "${lines[4]}")
|
epoch_key=$(func_parser_key "${lines[4]}")
|
||||||
|
epoch_num=$(func_parser_value "${lines[4]}")
|
||||||
save_model_key=$(func_parser_key "${lines[5]}")
|
save_model_key=$(func_parser_key "${lines[5]}")
|
||||||
save_infer_key=$(func_parser_key "${lines[6]}")
|
train_batch_key=$(func_parser_key "${lines[6]}")
|
||||||
train_batch_key=$(func_parser_key "${lines[7]}")
|
train_use_gpu_key=$(func_parser_key "${lines[7]}")
|
||||||
train_use_gpu_key=$(func_parser_key "${lines[8]}")
|
pretrain_model_key=$(func_parser_key "${lines[8]}")
|
||||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
pretrain_model_value=$(func_parser_value "${lines[8]}")
|
||||||
|
|
||||||
trainer_list=$(func_parser_value "${lines[10]}")
|
trainer_list=$(func_parser_value "${lines[9]}")
|
||||||
norm_trainer=$(func_parser_value "${lines[11]}")
|
norm_trainer=$(func_parser_value "${lines[10]}")
|
||||||
pact_trainer=$(func_parser_value "${lines[12]}")
|
pact_trainer=$(func_parser_value "${lines[11]}")
|
||||||
fpgm_trainer=$(func_parser_value "${lines[13]}")
|
fpgm_trainer=$(func_parser_value "${lines[12]}")
|
||||||
distill_trainer=$(func_parser_value "${lines[14]}")
|
distill_trainer=$(func_parser_value "${lines[13]}")
|
||||||
|
|
||||||
eval_py=$(func_parser_value "${lines[15]}")
|
eval_py=$(func_parser_value "${lines[14]}")
|
||||||
norm_export=$(func_parser_value "${lines[16]}")
|
|
||||||
pact_export=$(func_parser_value "${lines[17]}")
|
|
||||||
fpgm_export=$(func_parser_value "${lines[18]}")
|
|
||||||
distill_export=$(func_parser_value "${lines[19]}")
|
|
||||||
|
|
||||||
inference_py=$(func_parser_value "${lines[20]}")
|
save_infer_key=$(func_parser_key "${lines[15]}")
|
||||||
use_gpu_key=$(func_parser_key "${lines[21]}")
|
export_weight=$(func_parser_key "${lines[16]}")
|
||||||
use_gpu_list=$(func_parser_value "${lines[21]}")
|
norm_export=$(func_parser_value "${lines[17]}")
|
||||||
use_mkldnn_key=$(func_parser_key "${lines[22]}")
|
pact_export=$(func_parser_value "${lines[18]}")
|
||||||
use_mkldnn_list=$(func_parser_value "${lines[22]}")
|
fpgm_export=$(func_parser_value "${lines[19]}")
|
||||||
cpu_threads_key=$(func_parser_key "${lines[23]}")
|
distill_export=$(func_parser_value "${lines[20]}")
|
||||||
cpu_threads_list=$(func_parser_value "${lines[23]}")
|
|
||||||
batch_size_key=$(func_parser_key "${lines[24]}")
|
inference_py=$(func_parser_value "${lines[21]}")
|
||||||
batch_size_list=$(func_parser_value "${lines[24]}")
|
use_gpu_key=$(func_parser_key "${lines[22]}")
|
||||||
use_trt_key=$(func_parser_key "${lines[25]}")
|
use_gpu_list=$(func_parser_value "${lines[22]}")
|
||||||
use_trt_list=$(func_parser_value "${lines[25]}")
|
use_mkldnn_key=$(func_parser_key "${lines[23]}")
|
||||||
precision_key=$(func_parser_key "${lines[26]}")
|
use_mkldnn_list=$(func_parser_value "${lines[23]}")
|
||||||
precision_list=$(func_parser_value "${lines[26]}")
|
cpu_threads_key=$(func_parser_key "${lines[24]}")
|
||||||
model_dir_key=$(func_parser_key "${lines[27]}")
|
cpu_threads_list=$(func_parser_value "${lines[24]}")
|
||||||
image_dir_key=$(func_parser_key "${lines[28]}")
|
batch_size_key=$(func_parser_key "${lines[25]}")
|
||||||
save_log_key=$(func_parser_key "${lines[29]}")
|
batch_size_list=$(func_parser_value "${lines[25]}")
|
||||||
|
use_trt_key=$(func_parser_key "${lines[26]}")
|
||||||
|
use_trt_list=$(func_parser_value "${lines[26]}")
|
||||||
|
precision_key=$(func_parser_key "${lines[27]}")
|
||||||
|
precision_list=$(func_parser_value "${lines[27]}")
|
||||||
|
infer_model_key=$(func_parser_key "${lines[28]}")
|
||||||
|
infer_model=$(func_parser_value "${lines[28]}")
|
||||||
|
image_dir_key=$(func_parser_key "${lines[29]}")
|
||||||
|
infer_img_dir=$(func_parser_value "${lines[29]}")
|
||||||
|
save_log_key=$(func_parser_key "${lines[30]}")
|
||||||
|
|
||||||
LOG_PATH="./test/output"
|
LOG_PATH="./test/output"
|
||||||
mkdir -p ${LOG_PATH}
|
mkdir -p ${LOG_PATH}
|
||||||
status_log="${LOG_PATH}/results.log"
|
status_log="${LOG_PATH}/results.log"
|
||||||
|
|
||||||
if [ ${MODE} = "lite_train_infer" ]; then
|
|
||||||
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
|
|
||||||
export epoch_num=10
|
|
||||||
elif [ ${MODE} = "whole_infer" ]; then
|
|
||||||
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
|
|
||||||
export epoch_num=10
|
|
||||||
elif [ ${MODE} = "whole_train_infer" ]; then
|
|
||||||
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
|
|
||||||
export epoch_num=300
|
|
||||||
else
|
|
||||||
export infer_img_dir="./inference/ch_det_data_50/all-sum-510"
|
|
||||||
export infer_model_dir="./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy"
|
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
function func_inference(){
|
function func_inference(){
|
||||||
IFS='|'
|
IFS='|'
|
||||||
|
@ -110,7 +102,7 @@ function func_inference(){
|
||||||
for threads in ${cpu_threads_list[*]}; do
|
for threads in ${cpu_threads_list[*]}; do
|
||||||
for batch_size in ${batch_size_list[*]}; do
|
for batch_size in ${batch_size_list[*]}; do
|
||||||
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}"
|
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}"
|
||||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
||||||
eval $command
|
eval $command
|
||||||
status_check $? "${command}" "${status_log}"
|
status_check $? "${command}" "${status_log}"
|
||||||
done
|
done
|
||||||
|
@ -124,7 +116,7 @@ function func_inference(){
|
||||||
fi
|
fi
|
||||||
for batch_size in ${batch_size_list[*]}; do
|
for batch_size in ${batch_size_list[*]}; do
|
||||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}"
|
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}"
|
||||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
|
||||||
eval $command
|
eval $command
|
||||||
status_check $? "${command}" "${status_log}"
|
status_check $? "${command}" "${status_log}"
|
||||||
done
|
done
|
||||||
|
@ -138,9 +130,9 @@ if [ ${MODE} != "infer" ]; then
|
||||||
|
|
||||||
IFS="|"
|
IFS="|"
|
||||||
for gpu in ${gpu_list[*]}; do
|
for gpu in ${gpu_list[*]}; do
|
||||||
train_use_gpu=True
|
use_gpu=True
|
||||||
if [ ${gpu} = "-1" ];then
|
if [ ${gpu} = "-1" ];then
|
||||||
train_use_gpu=False
|
use_gpu=False
|
||||||
env=""
|
env=""
|
||||||
elif [ ${#gpu} -le 1 ];then
|
elif [ ${#gpu} -le 1 ];then
|
||||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||||
|
@ -155,6 +147,7 @@ for gpu in ${gpu_list[*]}; do
|
||||||
ips=${array[0]}
|
ips=${array[0]}
|
||||||
gpu=${array[1]}
|
gpu=${array[1]}
|
||||||
IFS="|"
|
IFS="|"
|
||||||
|
env=" "
|
||||||
fi
|
fi
|
||||||
for autocast in ${autocast_list[*]}; do
|
for autocast in ${autocast_list[*]}; do
|
||||||
for trainer in ${trainer_list[*]}; do
|
for trainer in ${trainer_list[*]}; do
|
||||||
|
@ -179,13 +172,32 @@ for gpu in ${gpu_list[*]}; do
|
||||||
continue
|
continue
|
||||||
fi
|
fi
|
||||||
|
|
||||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
# not set autocast when autocast is null
|
||||||
if [ ${#gpu} -le 2 ];then # epoch_num #TODO
|
if [ ${autocast} = "null" ]; then
|
||||||
cmd="${python} ${run_train} ${train_use_gpu_key}=${train_use_gpu} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log} "
|
set_autocast=" "
|
||||||
elif [ ${#gpu} -le 15 ];then
|
|
||||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}"
|
|
||||||
else
|
else
|
||||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}"
|
set_autocast="${autocast_key}=${autocast}"
|
||||||
|
fi
|
||||||
|
# not set epoch when whole_train_infer
|
||||||
|
if [ ${MODE} != "whole_train_infer" ]; then
|
||||||
|
set_epoch="${epoch_key}=${epoch_num}"
|
||||||
|
else
|
||||||
|
set_epoch=" "
|
||||||
|
fi
|
||||||
|
# set pretrain
|
||||||
|
if [ ${pretrain_model_value} != "null" ]; then
|
||||||
|
set_pretrain="${pretrain_model_key}=${pretrain_model_value}"
|
||||||
|
else
|
||||||
|
set_pretrain=" "
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||||
|
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||||
|
cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
|
||||||
|
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||||
|
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
|
||||||
|
else # train with multi-machine
|
||||||
|
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast}"
|
||||||
fi
|
fi
|
||||||
# run train
|
# run train
|
||||||
eval $cmd
|
eval $cmd
|
||||||
|
@ -198,11 +210,12 @@ for gpu in ${gpu_list[*]}; do
|
||||||
|
|
||||||
# run export model
|
# run export model
|
||||||
save_infer_path="${save_log}"
|
save_infer_path="${save_log}"
|
||||||
export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
|
export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
|
||||||
eval $export_cmd
|
eval $export_cmd
|
||||||
status_check $? "${export_cmd}" "${status_log}"
|
status_check $? "${export_cmd}" "${status_log}"
|
||||||
|
|
||||||
#run inference
|
#run inference
|
||||||
|
echo $env
|
||||||
save_infer_path="${save_log}"
|
save_infer_path="${save_log}"
|
||||||
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
|
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
|
||||||
done
|
done
|
||||||
|
@ -210,12 +223,13 @@ for gpu in ${gpu_list[*]}; do
|
||||||
done
|
done
|
||||||
|
|
||||||
else
|
else
|
||||||
save_infer_path="${LOG_PATH}/${MODE}"
|
GPUID=$3
|
||||||
run_export=${norm_export}
|
if [ ${#GPUID} -le 0 ];then
|
||||||
export_cmd="${python} ${run_export} ${save_model_key}=${save_infer_path} ${pretrain_model_key}=${infer_model_dir} ${save_infer_key}=${save_infer_path}"
|
env=" "
|
||||||
eval $export_cmd
|
else
|
||||||
status_check $? "${export_cmd}" "${status_log}"
|
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||||
|
fi
|
||||||
#run inference
|
echo $env
|
||||||
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
|
#run inference
|
||||||
|
func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}"
|
||||||
fi
|
fi
|
||||||
|
|
Loading…
Reference in New Issue