add autolog for infer_rec
This commit is contained in:
parent
38801c7f5e
commit
e51e2b2bb9
|
@ -64,6 +64,24 @@ class TextRecognizer(object):
|
|||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
||||
utility.create_predictor(args, 'rec', logger)
|
||||
self.benchmark = args.benchmark
|
||||
if args.benchmark:
|
||||
import auto_log
|
||||
pid = os.getpid()
|
||||
self.autolog = auto_log.AutoLogger(
|
||||
model_name="rec",
|
||||
model_precision=args.precision,
|
||||
batch_size=6,
|
||||
data_shape="dynamic",
|
||||
save_path="./output/auto_log.lpg",
|
||||
inference_config=self.config,
|
||||
pids=pid,
|
||||
process_name=None,
|
||||
gpu_ids=0 if args.use_gpu else None,
|
||||
time_keys=[
|
||||
'preprocess_time', 'inference_time', 'postprocess_time'
|
||||
],
|
||||
warmup=10)
|
||||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
|
@ -168,6 +186,8 @@ class TextRecognizer(object):
|
|||
rec_res = [['', 0.0]] * img_num
|
||||
batch_num = self.rec_batch_num
|
||||
st = time.time()
|
||||
if self.benchmark:
|
||||
self.autolog.times.start()
|
||||
for beg_img_no in range(0, img_num, batch_num):
|
||||
end_img_no = min(img_num, beg_img_no + batch_num)
|
||||
norm_img_batch = []
|
||||
|
@ -196,6 +216,8 @@ class TextRecognizer(object):
|
|||
norm_img_batch.append(norm_img[0])
|
||||
norm_img_batch = np.concatenate(norm_img_batch)
|
||||
norm_img_batch = norm_img_batch.copy()
|
||||
if self.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
|
||||
if self.rec_algorithm == "SRN":
|
||||
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
|
||||
|
@ -222,6 +244,8 @@ class TextRecognizer(object):
|
|||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
if self.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
preds = {"predict": outputs[2]}
|
||||
else:
|
||||
self.input_tensor.copy_from_cpu(norm_img_batch)
|
||||
|
@ -231,11 +255,14 @@ class TextRecognizer(object):
|
|||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
if self.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
preds = outputs[0]
|
||||
rec_result = self.postprocess_op(preds)
|
||||
for rno in range(len(rec_result)):
|
||||
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
||||
|
||||
if self.benchmark:
|
||||
self.autolog.times.end(stamp=True)
|
||||
return rec_res, time.time() - st
|
||||
|
||||
|
||||
|
@ -251,9 +278,6 @@ def main(args):
|
|||
for i in range(10):
|
||||
res = text_recognizer([img])
|
||||
|
||||
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
||||
count = 0
|
||||
|
||||
for image_file in image_file_list:
|
||||
img, flag = check_and_read_gif(image_file)
|
||||
if not flag:
|
||||
|
@ -273,6 +297,8 @@ def main(args):
|
|||
for ino in range(len(img_list)):
|
||||
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
|
||||
rec_res[ino]))
|
||||
if args.benchmark:
|
||||
text_recognizer.autolog.report()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue