fix distillation arch and model init

This commit is contained in:
littletomatodonkey 2021-06-03 05:30:43 +00:00
parent 9d1e5d0912
commit e5d3a2d880
6 changed files with 141 additions and 98 deletions

View File

@ -4,11 +4,9 @@ Global:
epoch_num: 800
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_D081
save_model_dir: ./output/rec_chinese_lite_distillation_v2.1
save_epoch_step: 3
eval_batch_step:
- 0
- 2000
eval_batch_step: [0, 2000]
cal_metric_during_train: true
pretrained_model: null
checkpoints: null
@ -37,12 +35,10 @@ Optimizer:
Architecture:
name: DistillationModel
algorithm: Distillation
freeze_params:
- false
- false
pretrained: null
Models:
Student:
pretrained: null
freeze_params: false
model_type: rec
algorithm: CRNN
Transform:
@ -59,6 +55,8 @@ Architecture:
name: CTCHead
fc_decay: 0.00001
Teacher:
pretrained: null
freeze_params: false
model_type: rec
algorithm: CRNN
Transform:
@ -85,16 +83,20 @@ Loss:
key: null
- DistillationDMLLoss:
weight: 1.0
model_name_list1: ["Student"]
model_name_list2: ["Teacher"]
act: "softmax"
model_name_pairs:
- ["Student", "Teacher"]
key: null
PostProcess:
name: DistillationCTCLabelDecode
model_name: "Student"
key_out: null
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
@ -108,10 +110,7 @@ Train:
- RecAug: null
- CTCLabelEncode: null
- RecResizeImg:
image_shape:
- 3
- 32
- 320
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
@ -135,10 +134,7 @@ Eval:
channel_first: false
- CTCLabelEncode: null
- RecResizeImg:
image_shape:
- 3
- 32
- 320
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image

View File

@ -62,19 +62,29 @@ class DMLLoss(nn.Layer):
DMLLoss
"""
def __init__(self, name="loss_dml"):
def __init__(self, act=None, name="loss_dml"):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
self.name = name
if act == "softmax":
self.act = nn.Softmax(axis=-1)
elif act == "sigmoid":
self.act = nn.Sigmoid()
else:
self.act = None
def forward(self, out1, out2):
loss_dict = {}
soft_out1 = F.softmax(out1, axis=-1)
log_soft_out1 = paddle.log(soft_out1)
soft_out2 = F.softmax(out2, axis=-1)
log_soft_out2 = paddle.log(soft_out2)
if self.act is not None:
out1 = self.act(out1)
out2 = self.act(out2)
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (F.kl_div(
log_soft_out1, soft_out2, reduction='batchmean') + F.kl_div(
log_soft_out2, soft_out1, reduction='batchmean')) / 2.0
log_out1, out2, reduction='batchmean') + F.kl_div(
log_out2, log_out1, reduction='batchmean')) / 2.0
loss_dict[self.name] = loss
return loss_dict
@ -90,7 +100,7 @@ class DistanceLoss(nn.Layer):
assert mode in ["l1", "l2", "smooth_l1"]
if mode == "l1":
self.loss_func = nn.L1Loss(**kargs)
elif mode == "l1":
elif mode == "l2":
self.loss_func = nn.MSELoss(**kargs)
elif mode == "smooth_l1":
self.loss_func = nn.SmoothL1Loss(**kargs)

View File

@ -23,35 +23,28 @@ class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self,
model_name_list1=[],
model_name_list2=[],
key=None,
def __init__(self, model_name_pairs=[], act=None, key=None,
name="loss_dml"):
super().__init__(name=name)
if not isinstance(model_name_list1, (list, )):
model_name_list1 = [model_name_list1]
if not isinstance(model_name_list2, (list, )):
model_name_list2 = [model_name_list2]
assert len(model_name_list1) == len(model_name_list2)
self.model_name_list1 = model_name_list1
self.model_name_list2 = model_name_list2
super().__init__(act=act, name=name)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
def forward(self, predicts, batch):
loss_dict = dict()
for idx in range(len(self.model_name_list1)):
out1 = predicts[self.model_name_list1[idx]]
out2 = predicts[self.model_name_list2[idx]]
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
assert len(loss) == 1
loss = list(loss.values())[0]
loss_dict["{}_{}".format(self.name, idx)] = loss
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
return loss_dict
@ -64,13 +57,15 @@ class DistillationCTCLoss(CTCLoss):
def forward(self, predicts, batch):
loss_dict = dict()
for model_name in self.model_name_list:
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
assert len(loss) == 1
loss = list(loss.values())[0]
loss_dict["{}_{}".format(self.name, model_name)] = loss
for key in loss:
loss_dict["{}_{}_{}".format(self.name, model_name,
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
return loss_dict

View File

@ -34,25 +34,20 @@ class DistillationModel(nn.Layer):
config (dict): the super parameters for module.
"""
super().__init__()
freeze_params = config["freeze_params"]
pretrained = config["pretrained"]
if not isinstance(freeze_params, list):
freeze_params = [freeze_params]
assert len(config["Models"]) == len(freeze_params)
if not isinstance(pretrained, list):
pretrained = [pretrained] * len(config["Models"])
assert len(config["Models"]) == len(pretrained)
self.model_dict = dict()
index = 0
for key in config["Models"]:
model_config = config["Models"][key]
freeze_params = False
pretrained = None
if "freeze_params" in model_config:
freeze_params = model_config.pop("freeze_params")
if "pretrained" in model_config:
pretrained = model_config.pop("pretrained")
model = BaseModel(model_config)
if pretrained[index] is not None:
if pretrained is not None:
load_dygraph_pretrain(model, path=pretrained[index])
if freeze_params[index]:
if freeze_params:
for param in model.parameters():
param.trainable = False
self.model_dict[key] = self.add_sublayer(key, model)

View File

@ -42,38 +42,10 @@ def _mkdir_if_not_exist(path, logger):
raise OSError('Failed to mkdir {}'.format(path))
def load_dygraph_pretrain(model,
logger=None,
path=None,
load_static_weights=False):
def load_dygraph_pretrain(model, logger=None, path=None):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
if load_static_weights:
pre_state_dict = paddle.static.load_program_state(path)
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
weight_name = weight_name.replace('binarize', '').replace(
'thresh', '') # for DB
if weight_name in pre_state_dict.keys():
# logger.info('Load weight: {}, shape: {}'.format(
# weight_name, pre_state_dict[weight_name].shape))
if 'encoder_rnn' in key:
# delete axis which is 1
pre_state_dict[weight_name] = pre_state_dict[
weight_name].squeeze()
# change axis
if len(pre_state_dict[weight_name].shape) > 1:
pre_state_dict[weight_name] = pre_state_dict[
weight_name].transpose((1, 0))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_state_dict(param_state_dict)
return
param_state_dict = paddle.load(path + '.pdparams')
model.set_state_dict(param_state_dict)
return
@ -108,15 +80,10 @@ def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
logger.info("resume from {}".format(checkpoints))
elif pretrained_model:
load_static_weights = global_config.get('load_static_weights', False)
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
for idx, pretrained in enumerate(pretrained_model):
load_static = load_static_weights[idx]
load_dygraph_pretrain(
model, logger, path=pretrained, load_static_weights=load_static)
for pretrained in pretrained_model:
load_dygraph_pretrain(model, logger, path=pretrained)
logger.info("load pretrained model from {}".format(
pretrained_model))
else:

View File

@ -0,0 +1,80 @@
# Python端预测部署
Python预测可以使用`tools/infer.py`此种方式依赖PaddleDetection源码也可以使用本篇教程预测方式先将模型导出使用一个独立的文件进行预测。
本篇教程使用AnalysisPredictor对[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)进行高性能预测。
在PaddlePaddle中预测引擎和训练引擎底层有着不同的优化方法, 预测引擎使用了AnalysisPredictor专门针对推理进行了优化是基于[C++预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/native_infer.html)的Python接口该引擎可以对模型进行多项图优化减少不必要的内存拷贝。如果用户在部署已训练模型的过程中对性能有较高的要求我们提供了独立于PaddleDetection的预测脚本方便用户直接集成部署。
主要包含两个步骤:
- 导出预测模型
- 基于Python的预测
## 1. 导出预测模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数而在部署过程中我们只需要前向参数具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)
导出后目录下,包括`infer_cfg.yml`, `model.pdiparams`, `model.pdiparams.info`, `model.pdmodel`四个文件。
## 2. 基于python的预测
### 2.1 安装依赖
- `PaddlePaddle`的安装:
请点击[官方安装文档](https://paddlepaddle.org.cn/install/quick) 选择适合的方式版本为2.0rc1以上即可
- 切换到`PaddleDetection`代码库根目录,执行`pip install -r requirements.txt`安装其它依赖
### 2.2 执行预测程序
在终端输入以下命令进行预测:
```bash
python deploy/python/infer.py --model_dir=/path/to/models --image_file=/path/to/image
--use_gpu=(False/True)
```
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| --model_dir | Yes|上述导出的模型路径 |
| --image_file | Option |需要预测的图片 |
| --video_file | Option |需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID默认为-1(表示不使用摄像头预测可设置为0 - (摄像头数目-1) ),预测过程中在可视化界面按`q`退出输出预测结果到output/output.mp4|
| --use_gpu |No|是否GPU默认为False|
| --run_mode |No|使用GPU时默认为fluid, 可选fluid/trt_fp32/trt_fp16/trt_int8|
| --threshold |No|预测得分的阈值默认为0.5|
| --output_dir |No|可视化结果保存的根目录默认为output/|
| --run_benchmark |No|是否运行benchmark同时需指定--image_file|
说明:
- run_modefluid代表使用AnalysisPredictor精度float32来推理其他参数指用AnalysisPredictorTensorRT不同精度来推理。
- PaddlePaddle默认的GPU安装包(<=1.7)不支持基于TensorRT进行预测如果想基于TensorRT加速预测需要自行编译详细可参考[预测库编译教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_usage/deploy/inference/paddle_tensorrt_infer.html)。
## 3. 部署性能对比测试
对比AnalysisPredictor相对Executor的推理速度
### 3.1 测试环境:
- CUDA 9.0
- CUDNN 7.5
- PaddlePaddle 1.71
- GPU: Tesla P40
### 3.2 测试方式:
- Batch Size=1
- 去掉前100轮warmup时间测试100轮的平均时间单位ms/image只计算模型运行时间不包括数据的处理和拷贝。
### 3.3 测试结果
|模型 | AnalysisPredictor | Executor | 输入|
|---|----|---|---|
| YOLOv3-MobileNetv1 | 15.20 | 19.54 | 608*608
| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 |800*1088
| faster_rcnn_r50_1x | 326.11 | 347.22 | 800*1067
| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800*1088
| mask_rcnn_r50_1x | 326.11 | 350.94 | 800*1067