commit
e807901b7b
|
@ -142,8 +142,8 @@ class TextDetector(object):
|
|||
outputs.append(output)
|
||||
outs_dict = {}
|
||||
if self.det_algorithm == "EAST":
|
||||
outs_dict['f_score'] = outputs[0]
|
||||
outs_dict['f_geo'] = outputs[1]
|
||||
outs_dict['f_geo'] = outputs[0]
|
||||
outs_dict['f_score'] = outputs[1]
|
||||
else:
|
||||
outs_dict['maps'] = outputs[0]
|
||||
dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
|
||||
|
@ -153,6 +153,8 @@ class TextDetector(object):
|
|||
return dt_boxes, elapse
|
||||
|
||||
|
||||
from tools.infer.utility import draw_text_det_res
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = utility.parse_args()
|
||||
image_file_list = get_image_file_list(args.image_dir)
|
||||
|
@ -169,14 +171,9 @@ if __name__ == "__main__":
|
|||
total_time += elapse
|
||||
count += 1
|
||||
print("Predict time of %s:" % image_file, elapse)
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
draw_img = draw_ocr(img, dt_boxes, None, None, False)
|
||||
draw_img_save = "./inference_results/"
|
||||
if not os.path.exists(draw_img_save):
|
||||
os.makedirs(draw_img_save)
|
||||
cv2.imwrite(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file)),
|
||||
draw_img[:, :, ::-1])
|
||||
print("The visualized image saved in {}".format(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file))))
|
||||
img_draw = draw_text_det_res(dt_boxes, image_file, return_img=True)
|
||||
save_path = os.path.join("./inference_det/",
|
||||
os.path.basename(image_file))
|
||||
print("The visualized image saved in {}".format(save_path))
|
||||
|
||||
print("Avg Time:", total_time / (count - 1))
|
||||
|
|
|
@ -114,7 +114,6 @@ if __name__ == "__main__":
|
|||
valid_image_file_list.append(image_file)
|
||||
img_list.append(img)
|
||||
rec_res, predict_time = text_recognizer(img_list)
|
||||
rec_res, predict_time = text_recognizer(img_list)
|
||||
for ino in range(len(img_list)):
|
||||
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
||||
print("Total predict time for %d images:%.3f" %
|
||||
|
|
|
@ -103,13 +103,12 @@ def create_predictor(args, mode):
|
|||
return predictor, input_tensor, output_tensors
|
||||
|
||||
|
||||
def draw_text_det_res(dt_boxes, img_path):
|
||||
def draw_text_det_res(dt_boxes, img_path, return_img=True):
|
||||
src_im = cv2.imread(img_path)
|
||||
for box in dt_boxes:
|
||||
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
||||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||
img_name_pure = img_path.split("/")[-1]
|
||||
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
||||
return src_im
|
||||
|
||||
|
||||
def resize_img(img, input_size=600):
|
||||
|
|
|
@ -191,8 +191,8 @@ def build_export(config, main_prog, startup_prog):
|
|||
func_infor = config['Architecture']['function']
|
||||
model = create_module(func_infor)(params=config)
|
||||
image, outputs = model(mode='export')
|
||||
fetches_var = [outputs[name] for name in outputs]
|
||||
fetches_var_name = [name for name in outputs]
|
||||
fetches_var = sorted([outputs[name] for name in outputs])
|
||||
fetches_var_name = [name for name in fetches_var]
|
||||
feeded_var_names = [image.name]
|
||||
target_vars = fetches_var
|
||||
return feeded_var_names, target_vars, fetches_var_name
|
||||
|
|
Loading…
Reference in New Issue