Merge pull request #3083 from WenmuZhou/table1

[DO NOT MERGE]Table
This commit is contained in:
MissPenguin 2021-06-15 17:39:05 +08:00 committed by GitHub
commit e93735a2ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
47 changed files with 5615 additions and 108 deletions

View File

@ -1,7 +1,7 @@
include LICENSE.txt include LICENSE
include README.md include README.md
recursive-include ppocr/utils *.txt utility.py logging.py recursive-include ppocr/utils *.txt utility.py logging.py network.py
recursive-include ppocr/data/ *.py recursive-include ppocr/data/ *.py
recursive-include ppocr/postprocess *.py recursive-include ppocr/postprocess *.py
recursive-include tools/infer *.py recursive-include tools/infer *.py

View File

@ -355,3 +355,4 @@ im_show.save('result.jpg')
| det | 前向时使用启动检测 | TRUE | | det | 前向时使用启动检测 | TRUE |
| rec | 前向时是否启动识别 | TRUE | | rec | 前向时是否启动识别 | TRUE |
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE | | cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
| show_log | 是否打印det和rec等信息 | FALSE |

View File

@ -362,3 +362,5 @@ im_show.save('result.jpg')
| det | Enable detction when `ppocr.ocr` func exec | TRUE | | det | Enable detction when `ppocr.ocr` func exec | TRUE |
| rec | Enable recognition when `ppocr.ocr` func exec | TRUE | | rec | Enable recognition when `ppocr.ocr` func exec | TRUE |
| cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE | | cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE |
| show_log | Whether to print log in det and rec
| FALSE |

BIN
doc/table/1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 263 KiB

BIN
doc/table/pipeline.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -19,17 +19,16 @@ __dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, '')) sys.path.append(os.path.join(__dir__, ''))
import cv2 import cv2
import logging
import numpy as np import numpy as np
from pathlib import Path from pathlib import Path
import tarfile
import requests
from tqdm import tqdm
from tools.infer import predict_system from tools.infer import predict_system
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
logger = get_logger() logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from ppocr.utils.network import maybe_download, download_with_progressbar, is_link, confirm_model_dir_url
from tools.infer.utility import draw_ocr, init_args, str2bool from tools.infer.utility import draw_ocr, init_args, str2bool
__all__ = ['PaddleOCR'] __all__ = ['PaddleOCR']
@ -37,84 +36,84 @@ __all__ = ['PaddleOCR']
model_urls = { model_urls = {
'det': { 'det': {
'ch': 'ch':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
'en': 'en':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar' 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar'
}, },
'rec': { 'rec': {
'ch': { 'ch': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/ppocr_keys_v1.txt' 'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
}, },
'en': { 'en': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/en_dict.txt' 'dict_path': './ppocr/utils/en_dict.txt'
}, },
'french': { 'french': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/french_dict.txt' 'dict_path': './ppocr/utils/dict/french_dict.txt'
}, },
'german': { 'german': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/german_dict.txt' 'dict_path': './ppocr/utils/dict/german_dict.txt'
}, },
'korean': { 'korean': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/korean_dict.txt' 'dict_path': './ppocr/utils/dict/korean_dict.txt'
}, },
'japan': { 'japan': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/japan_dict.txt' 'dict_path': './ppocr/utils/dict/japan_dict.txt'
}, },
'chinese_cht': { 'chinese_cht': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/chinese_cht_dict.txt' 'dict_path': './ppocr/utils/dict/chinese_cht_dict.txt'
}, },
'ta': { 'ta': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/ta_dict.txt' 'dict_path': './ppocr/utils/dict/ta_dict.txt'
}, },
'te': { 'te': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/te_dict.txt' 'dict_path': './ppocr/utils/dict/te_dict.txt'
}, },
'ka': { 'ka': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/ka_dict.txt' 'dict_path': './ppocr/utils/dict/ka_dict.txt'
}, },
'latin': { 'latin': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/latin_dict.txt' 'dict_path': './ppocr/utils/dict/latin_dict.txt'
}, },
'arabic': { 'arabic': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/arabic_dict.txt' 'dict_path': './ppocr/utils/dict/arabic_dict.txt'
}, },
'cyrillic': { 'cyrillic': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/cyrillic_dict.txt' 'dict_path': './ppocr/utils/dict/cyrillic_dict.txt'
}, },
'devanagari': { 'devanagari': {
'url': 'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar', 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/devanagari_dict.txt' 'dict_path': './ppocr/utils/dict/devanagari_dict.txt'
} }
}, },
'cls': 'cls':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar' 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
} }
SUPPORT_DET_MODEL = ['DB'] SUPPORT_DET_MODEL = ['DB']
@ -123,50 +122,6 @@ SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/") BASE_DIR = os.path.expanduser("~/.paddleocr/")
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
logger.error("Something went wrong while downloading models")
sys.exit(0)
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def parse_args(mMain=True): def parse_args(mMain=True):
import argparse import argparse
parser = init_args() parser = init_args()
@ -194,10 +149,12 @@ class PaddleOCR(predict_system.TextSystem):
args: args:
**kwargs: other params show in paddleocr --help **kwargs: other params show in paddleocr --help
""" """
postprocess_params = parse_args(mMain=False) params = parse_args(mMain=False)
postprocess_params.__dict__.update(**kwargs) params.__dict__.update(**kwargs)
self.use_angle_cls = postprocess_params.use_angle_cls if not params.show_log:
lang = postprocess_params.lang logger.setLevel(logging.INFO)
self.use_angle_cls = params.use_angle_cls
lang = params.lang
latin_lang = [ latin_lang = [
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga',
'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms',
@ -223,46 +180,45 @@ class PaddleOCR(predict_system.TextSystem):
lang = "devanagari" lang = "devanagari"
assert lang in model_urls[ assert lang in model_urls[
'rec'], 'param lang must in {}, but got {}'.format( 'rec'], 'param lang must in {}, but got {}'.format(
model_urls['rec'].keys(), lang) model_urls['rec'].keys(), lang)
if lang == "ch": if lang == "ch":
det_lang = "ch" det_lang = "ch"
else: else:
det_lang = "en" det_lang = "en"
use_inner_dict = False use_inner_dict = False
if postprocess_params.rec_char_dict_path is None: if params.rec_char_dict_path is None:
use_inner_dict = True use_inner_dict = True
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][ params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path'] 'dict_path']
# init model dir # init model dir
if postprocess_params.det_model_dir is None: params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
postprocess_params.det_model_dir = os.path.join(BASE_DIR, VERSION, os.path.join(BASE_DIR, VERSION, 'det', det_lang),
'det', det_lang) model_urls['det'][det_lang])
if postprocess_params.rec_model_dir is None: params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
postprocess_params.rec_model_dir = os.path.join(BASE_DIR, VERSION, os.path.join(BASE_DIR, VERSION, 'rec', lang),
'rec', lang) model_urls['rec'][lang]['url'])
if postprocess_params.cls_model_dir is None: params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir,
postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls') os.path.join(BASE_DIR, VERSION, 'cls'),
print(postprocess_params) model_urls['cls'])
# download model # download model
maybe_download(postprocess_params.det_model_dir, maybe_download(params.det_model_dir, det_url)
model_urls['det'][det_lang]) maybe_download(params.rec_model_dir, rec_url)
maybe_download(postprocess_params.rec_model_dir, maybe_download(params.cls_model_dir, cls_url)
model_urls['rec'][lang]['url'])
maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL: if params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL)) logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0) sys.exit(0)
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL: if params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL)) logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0) sys.exit(0)
if use_inner_dict: if use_inner_dict:
postprocess_params.rec_char_dict_path = str( params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path) Path(__file__).parent / params.rec_char_dict_path)
print(params)
# init det_model and rec_model # init det_model and rec_model
super().__init__(postprocess_params) super().__init__(params)
def ocr(self, img, det=True, rec=True, cls=True): def ocr(self, img, det=True, rec=True, cls=True):
""" """
@ -320,7 +276,7 @@ def main():
# for cmd # for cmd
args = parse_args(mMain=True) args = parse_args(mMain=True)
image_dir = args.image_dir image_dir = args.image_dir
if image_dir.startswith('http'): if is_link(image_dir):
download_with_progressbar(image_dir, 'tmp.jpg') download_with_progressbar(image_dir, 'tmp.jpg')
image_file_list = ['tmp.jpg'] image_file_list = ['tmp.jpg']
else: else:

View File

@ -29,6 +29,7 @@ from .label_ops import *
from .east_process import * from .east_process import *
from .sast_process import * from .sast_process import *
from .pg_process import * from .pg_process import *
from .gen_table_mask import *
def transform(data, ops=None): def transform(data, ops=None):

View File

@ -0,0 +1,244 @@
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import six
import cv2
import numpy as np
class GenTableMask(object):
""" gen table mask """
def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
self.shrink_h_max = 5
self.shrink_w_max = 5
self.mask_type = mask_type
def projection(self, erosion, h, w, spilt_threshold=0):
# 水平投影
projection_map = np.ones_like(erosion)
project_val_array = [0 for _ in range(0, h)]
for j in range(0, h):
for i in range(0, w):
if erosion[j, i] == 255:
project_val_array[j] += 1
# 根据数组,获取切割点
start_idx = 0 # 记录进入字符区的索引
end_idx = 0 # 记录进入空白区域的索引
in_text = False # 是否遍历到了字符区内
box_list = []
for i in range(len(project_val_array)):
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
in_text = True
start_idx = i
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
end_idx = i
in_text = False
if end_idx - start_idx <= 2:
continue
box_list.append((start_idx, end_idx + 1))
if in_text:
box_list.append((start_idx, h - 1))
# 绘制投影直方图
for j in range(0, h):
for i in range(0, project_val_array[j]):
projection_map[j, i] = 0
return box_list, projection_map
def projection_cx(self, box_img):
box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
h, w = box_gray_img.shape
# 灰度图片进行二值化处理
ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
# 纵向腐蚀
if h < w:
kernel = np.ones((2, 1), np.uint8)
erode = cv2.erode(thresh1, kernel, iterations=1)
else:
erode = thresh1
# 水平膨胀
kernel = np.ones((1, 5), np.uint8)
erosion = cv2.dilate(erode, kernel, iterations=1)
# 水平投影
projection_map = np.ones_like(erosion)
project_val_array = [0 for _ in range(0, h)]
for j in range(0, h):
for i in range(0, w):
if erosion[j, i] == 255:
project_val_array[j] += 1
# 根据数组,获取切割点
start_idx = 0 # 记录进入字符区的索引
end_idx = 0 # 记录进入空白区域的索引
in_text = False # 是否遍历到了字符区内
box_list = []
spilt_threshold = 0
for i in range(len(project_val_array)):
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
in_text = True
start_idx = i
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
end_idx = i
in_text = False
if end_idx - start_idx <= 2:
continue
box_list.append((start_idx, end_idx + 1))
if in_text:
box_list.append((start_idx, h - 1))
# 绘制投影直方图
for j in range(0, h):
for i in range(0, project_val_array[j]):
projection_map[j, i] = 0
split_bbox_list = []
if len(box_list) > 1:
for i, (h_start, h_end) in enumerate(box_list):
if i == 0:
h_start = 0
if i == len(box_list):
h_end = h
word_img = erosion[h_start:h_end + 1, :]
word_h, word_w = word_img.shape
w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h)
w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
if h_start > 0:
h_start -= 1
h_end += 1
word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :]
split_bbox_list.append([w_start, h_start, w_end, h_end])
else:
split_bbox_list.append([0, 0, w, h])
return split_bbox_list
def shrink_bbox(self, bbox):
left, top, right, bottom = bbox
sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
left_new = left + sh_w
right_new = right - sh_w
top_new = top + sh_h
bottom_new = bottom - sh_h
if left_new >= right_new:
left_new = left
right_new = right
if top_new >= bottom_new:
top_new = top
bottom_new = bottom
return [left_new, top_new, right_new, bottom_new]
def __call__(self, data):
img = data['image']
cells = data['cells']
height, width = img.shape[0:2]
if self.mask_type == 1:
mask_img = np.zeros((height, width), dtype=np.float32)
else:
mask_img = np.zeros((height, width, 3), dtype=np.float32)
cell_num = len(cells)
for cno in range(cell_num):
if "bbox" in cells[cno]:
bbox = cells[cno]['bbox']
left, top, right, bottom = bbox
box_img = img[top:bottom, left:right, :].copy()
split_bbox_list = self.projection_cx(box_img)
for sno in range(len(split_bbox_list)):
split_bbox_list[sno][0] += left
split_bbox_list[sno][1] += top
split_bbox_list[sno][2] += left
split_bbox_list[sno][3] += top
for sno in range(len(split_bbox_list)):
left, top, right, bottom = split_bbox_list[sno]
left, top, right, bottom = self.shrink_bbox([left, top, right, bottom])
if self.mask_type == 1:
mask_img[top:bottom, left:right] = 1.0
data['mask_img'] = mask_img
else:
mask_img[top:bottom, left:right, :] = (255, 255, 255)
data['image'] = mask_img
return data
class ResizeTableImage(object):
def __init__(self, max_len, **kwargs):
super(ResizeTableImage, self).__init__()
self.max_len = max_len
def get_img_bbox(self, cells):
bbox_list = []
if len(cells) == 0:
return bbox_list
cell_num = len(cells)
for cno in range(cell_num):
if "bbox" in cells[cno]:
bbox = cells[cno]['bbox']
bbox_list.append(bbox)
return bbox_list
def resize_img_table(self, img, bbox_list, max_len):
height, width = img.shape[0:2]
ratio = max_len / (max(height, width) * 1.0)
resize_h = int(height * ratio)
resize_w = int(width * ratio)
img_new = cv2.resize(img, (resize_w, resize_h))
bbox_list_new = []
for bno in range(len(bbox_list)):
left, top, right, bottom = bbox_list[bno].copy()
left = int(left * ratio)
top = int(top * ratio)
right = int(right * ratio)
bottom = int(bottom * ratio)
bbox_list_new.append([left, top, right, bottom])
return img_new, bbox_list_new
def __call__(self, data):
img = data['image']
if 'cells' not in data:
cells = []
else:
cells = data['cells']
bbox_list = self.get_img_bbox(cells)
img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
data['image'] = img_new
cell_num = len(cells)
bno = 0
for cno in range(cell_num):
if "bbox" in data['cells'][cno]:
data['cells'][cno]['bbox'] = bbox_list_new[bno]
bno += 1
data['max_len'] = self.max_len
return data
class PaddingTableImage(object):
def __init__(self, **kwargs):
super(PaddingTableImage, self).__init__()
def __call__(self, data):
img = data['image']
max_len = data['max_len']
padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
height, width = img.shape[0:2]
padding_img[0:height, 0:width, :] = img.copy()
data['image'] = padding_img
return data

View File

@ -81,7 +81,7 @@ class NormalizeImage(object):
assert isinstance(img, assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage" np.ndarray), "invalid input 'img' in NormalizeImage"
data['image'] = ( data['image'] = (
img.astype('float32') * self.scale - self.mean) / self.std img.astype('float32') * self.scale - self.mean) / self.std
return data return data
@ -163,7 +163,7 @@ class DetResizeForTest(object):
img, (ratio_h, ratio_w) img, (ratio_h, ratio_w)
""" """
limit_side_len = self.limit_side_len limit_side_len = self.limit_side_len
h, w, _ = img.shape h, w, c = img.shape
# limit the max side # limit the max side
if self.limit_type == 'max': if self.limit_type == 'max':
@ -174,7 +174,7 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w ratio = float(limit_side_len) / w
else: else:
ratio = 1. ratio = 1.
else: elif self.limit_type == 'min':
if min(h, w) < limit_side_len: if min(h, w) < limit_side_len:
if h < w: if h < w:
ratio = float(limit_side_len) / h ratio = float(limit_side_len) / h
@ -182,6 +182,10 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w ratio = float(limit_side_len) / w
else: else:
ratio = 1. ratio = 1.
elif self.limit_type == 'resize_long':
ratio = float(limit_side_len) / max(h,w)
else:
raise Exception('not support limit type, image ')
resize_h = int(h * ratio) resize_h = int(h * ratio)
resize_w = int(w * ratio) resize_w = int(w * ratio)

View File

@ -24,7 +24,8 @@ __all__ = ['build_post_process']
from .db_postprocess import DBPostProcess from .db_postprocess import DBPostProcess
from .east_postprocess import EASTPostProcess from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
TableLabelDecode
from .cls_postprocess import ClsPostProcess from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess from .pg_postprocess import PGPostProcess
@ -33,7 +34,7 @@ def build_post_process(config, global_config=None):
support_dict = [ support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess', 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
'DistillationCTCLabelDecode' 'DistillationCTCLabelDecode', 'TableLabelDecode'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)

View File

@ -44,16 +44,16 @@ class BaseRecLabelDecode(object):
self.character_str = string.printable[:-6] self.character_str = string.printable[:-6]
dict_character = list(self.character_str) dict_character = list(self.character_str)
elif character_type in support_character_type: elif character_type in support_character_type:
self.character_str = "" self.character_str = []
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format( assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type) character_type)
with open(character_dict_path, "rb") as fin: with open(character_dict_path, "rb") as fin:
lines = fin.readlines() lines = fin.readlines()
for line in lines: for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n") line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line self.character_str.append(line)
if use_space_char: if use_space_char:
self.character_str += " " self.character_str.append(" ")
dict_character = list(self.character_str) dict_character = list(self.character_str)
else: else:
@ -319,3 +319,138 @@ class SRNLabelDecode(BaseRecLabelDecode):
assert False, "unsupport type %s in get_beg_end_flag_idx" \ assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end % beg_or_end
return idx return idx
class TableLabelDecode(object):
""" """
def __init__(self,
character_dict_path,
**kwargs):
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
self.dict_idx_character = {}
for i, char in enumerate(list_character):
self.dict_idx_character[i] = char
self.dict_character[char] = i
self.dict_elem = {}
self.dict_idx_elem = {}
for i, elem in enumerate(list_elem):
self.dict_idx_elem[i] = elem
self.dict_elem[elem] = i
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode('utf-8').strip("\n")
list_character.append(character)
for eno in range(1 + character_num, 1 + character_num + elem_num):
elem = lines[eno].decode('utf-8').strip("\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def __call__(self, preds):
structure_probs = preds['structure_probs']
loc_preds = preds['loc_preds']
if isinstance(structure_probs,paddle.Tensor):
structure_probs = structure_probs.numpy()
if isinstance(loc_preds,paddle.Tensor):
loc_preds = loc_preds.numpy()
structure_idx = structure_probs.argmax(axis=2)
structure_probs = structure_probs.max(axis=2)
structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(structure_idx,
structure_probs, 'elem')
res_html_code_list = []
res_loc_list = []
batch_num = len(structure_str)
for bno in range(batch_num):
res_loc = []
for sno in range(len(structure_str[bno])):
text = structure_str[bno][sno]
if text in ['<td>', '<td']:
pos = structure_pos[bno][sno]
res_loc.append(loc_preds[bno, pos])
res_html_code = ''.join(structure_str[bno])
res_loc = np.array(res_loc)
res_html_code_list.append(res_html_code)
res_loc_list.append(res_loc)
return {'res_html_code': res_html_code_list, 'res_loc': res_loc_list, 'res_score_list': result_score_list,
'res_elem_idx_list': result_elem_idx_list,'structure_str_list':structure_str}
def decode(self, text_index, structure_probs, char_or_elem):
"""convert text-label into text-index.
"""
if char_or_elem == "char":
current_dict = self.dict_idx_character
else:
current_dict = self.dict_idx_elem
ignored_tokens = self.get_ignored_tokens('elem')
beg_idx, end_idx = ignored_tokens
result_list = []
result_pos_list = []
result_score_list = []
result_elem_idx_list = []
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
elem_pos_list = []
elem_idx_list = []
score_list = []
for idx in range(len(text_index[batch_idx])):
tmp_elem_idx = int(text_index[batch_idx][idx])
if idx > 0 and tmp_elem_idx == end_idx:
break
if tmp_elem_idx in ignored_tokens:
continue
char_list.append(current_dict[tmp_elem_idx])
elem_pos_list.append(idx)
score_list.append(structure_probs[batch_idx, idx])
elem_idx_list.append(tmp_elem_idx)
result_list.append(char_list)
result_pos_list.append(elem_pos_list)
result_score_list.append(score_list)
result_elem_idx_list.append(elem_idx_list)
return result_list, result_pos_list, result_score_list, result_elem_idx_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = self.dict_character[self.beg_str]
elif beg_or_end == "end":
idx = self.dict_character[self.end_str]
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
% beg_or_end
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = self.dict_elem[self.beg_str]
elif beg_or_end == "end":
idx = self.dict_elem[self.end_str]
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
% beg_or_end
else:
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx

View File

@ -0,0 +1,277 @@
</overline>
α

$
ω
ψ
χ
(
υ
σ
,
ρ
ε
0
4
8
b
<
Ψ
Ω
D
3
Π
H
</strike>
L
Φ
Χ
θ
P
κ
λ
μ
T
ξ
X
β
γ
δ
\
ζ
η
`
d
<strike>
h
f
l
Θ
p
t
</sub>
x
Β
Γ
Δ
|
ǂ
ɛ
j
̧
̌
«
#
</b>
'
Ι
+
/
·
7
;
?
C
÷
G
K
<sup>
O
S
С
W
Α
[
_
c
z
g
<i>
o
<sub>
s
w
φ
ʹ
{
»
̆
e
ˆ
τ
ι
Ø
ß
×
˃
˂
"
i
&
π
*
æ
.
ø
Q
6
:
>
a
B
F
J
̄
N
R
V
<overline>
Z
^
¤
¥
§
<underline>
¢
£
­
Λ
©
n
r
°
±
v
<b>
k
~
̇
@
ł
®
!
</sup>
%
)
-
1
5
9
=
А
A
Σ
E
I
M
m
̨
</i>
U
Y
]
̸
2
̂
̀
́
̊
̈
q
u
ı
y
</underline>
̃
}
ν

File diff suppressed because it is too large Load Diff

View File

@ -22,7 +22,7 @@ logger_initialized = {}
@functools.lru_cache() @functools.lru_cache()
def get_logger(name='root', log_file=None, log_level=logging.INFO): def get_logger(name='root', log_file=None, log_level=logging.DEBUG):
"""Initialize and get a logger by name. """Initialize and get a logger by name.
If the logger has not been initialized, this method will initialize the If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will logger by adding one or two handlers, otherwise the initialized logger will

82
ppocr/utils/network.py Normal file
View File

@ -0,0 +1,82 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tarfile
import requests
from tqdm import tqdm
from ppocr.utils.logging import get_logger
def download_with_progressbar(url, save_path):
logger = get_logger()
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
logger.error("Something went wrong while downloading models")
sys.exit(0)
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
assert url.endswith('.tar'), 'Only supports tar compressed package'
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def is_link(s):
return s is not None and s.startswith('http')
def confirm_model_dir_url(model_dir, default_model_dir, default_url):
url = default_url
if model_dir is None or is_link(model_dir):
if is_link(model_dir):
url = model_dir
file_name = url.split('/')[-1][:-4]
model_dir = default_model_dir
model_dir = os.path.join(model_dir, file_name)
return model_dir, url

View File

9
test/MANIFEST.in Normal file
View File

@ -0,0 +1,9 @@
include LICENSE
include README.md
recursive-include ppocr/utils *.txt utility.py logging.py network.py
recursive-include ppocr/data/ *.py
recursive-include ppocr/postprocess *.py
recursive-include tools/infer *.py
recursive-include ppstructure *.py

17
test/__init__.py Normal file
View File

@ -0,0 +1,17 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .paddlestructure import PaddleStructure, draw_result, to_excel
__all__ = ['PaddleStructure', 'draw_result', 'to_excel']

70
test/api.md Normal file
View File

@ -0,0 +1,70 @@
# PaddleStructure
## 1. Introduction to pipeline
PaddleStructure is a toolkit for complex layout text OCR, the process is as follows
![pipeline](../doc/table/pipeline.png)
In PaddleStructure, the image will be analyzed by layoutparser first. In the layout analysis, the area in the image will be classified, and the OCR process will be carried out according to the category.
Currently layoutparser will output five categories:
1. Text
2. Title
3. Figure
4. List
5. Table
Types 1-4 follow the traditional OCR process, and 5 follow the Table OCR process.
## 2. LayoutParser
## 3. Table OCR
[doc](table/README.md)
## 4. PaddleStructure whl package introduction
### 4.1 Use
4.1.1 Use by code
```python
import cv2
from paddlestructure import PaddleStructure,draw_result
table_engine = PaddleStructure(
output='./output/table',
show_log=True)
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
for line in result:
print(line)
from PIL import Image
font_path = 'path/tp/PaddleOCR/doc/fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
4.1.2 Use by command line
```bash
paddlestructure --image_dir=../doc/table/1.png
```
### 参数说明
大部分参数和paddleocr whl包保持一致见 [whl包文档](../doc/doc_ch/whl.md)
| 字段 | 说明 | 默认值 |
|------------------------|------------------------------------------------------|------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| structure_max_len | structure模型预测时图像的长边resize尺度 | 488 |
| structure_model_dir | structure inference 模型地址 | None |
| structure_char_type | structure 模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |

69
test/api_ch.md Normal file
View File

@ -0,0 +1,69 @@
# PaddleStructure
## 1. pipeline介绍
PaddleStructure 是一个用于复杂板式文字OCR的工具包流程如下
![pipeline](../doc/table/pipeline.png)
在PaddleStructure中图片会先经由layoutparser进行版面分析在版面分析中会对图片里的区域进行分类根据根据类别进行对于的ocr流程。
目前layoutparser会输出五个类别:
1. Text
2. Title
3. Figure
4. List
5. Table
1-4类走传统的OCR流程5走表格的OCR流程。
## 2. LayoutParser
## 3. Table OCR
[文档](table/README_ch.md)
## 4. PaddleStructure whl包介绍
### 4.1 使用
4.1.1 代码使用
```python
import cv2
from paddlestructure import PaddleStructure,draw_result
table_engine = PaddleStructure(
output='./output/table',
show_log=True)
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
for line in result:
print(line)
from PIL import Image
font_path = 'path/tp/PaddleOCR/doc/fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
4.1.2 命令行使用
```bash
paddlestructure --image_dir=../doc/table/1.png
```
### 参数说明
大部分参数和paddleocr whl包保持一致见 [whl包文档](../doc/doc_ch/whl.md)
| 字段 | 说明 | 默认值 |
|------------------------|------------------------------------------------------|------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| structure_max_len | structure模型预测时图像的长边resize尺度 | 488 |
| structure_model_dir | structure inference 模型地址 | None |
| structure_char_type | structure 模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |

148
test/paddlestructure.py Normal file
View File

@ -0,0 +1,148 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
import cv2
import numpy as np
from pathlib import Path
from ppocr.utils.logging import get_logger
from test.predict_system import OCRSystem, save_res
from test.table.predict_table import to_excel
from test.utility import init_args, draw_result
logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from ppocr.utils.network import maybe_download, download_with_progressbar, confirm_model_dir_url, is_link
__all__ = ['PaddleStructure', 'draw_result', 'to_excel']
VERSION = '2.1'
BASE_DIR = os.path.expanduser("~/.paddlestructure/")
model_urls = {
'det': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar',
'rec': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar',
'structure': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar'
}
def parse_args(mMain=True):
import argparse
parser = init_args()
parser.add_help = mMain
for action in parser._actions:
if action.dest in ['rec_char_dict_path', 'structure_char_dict_path']:
action.default = None
if mMain:
return parser.parse_args()
else:
inference_args_dict = {}
for action in parser._actions:
inference_args_dict[action.dest] = action.default
return argparse.Namespace(**inference_args_dict)
class PaddleStructure(OCRSystem):
def __init__(self, **kwargs):
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
if not params.show_log:
logger.setLevel(logging.INFO)
params.use_angle_cls = False
# init model dir
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'det'),
model_urls['det'])
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'rec'),
model_urls['rec'])
params.structure_model_dir, structure_url = confirm_model_dir_url(params.structure_model_dir,
os.path.join(BASE_DIR, VERSION, 'structure'),
model_urls['structure'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.structure_model_dir, structure_url)
if params.rec_char_dict_path is None:
params.rec_char_type = 'EN'
if os.path.exists(str(Path(__file__).parent / 'ppocr/utils/dict/table_dict.txt')):
params.rec_char_dict_path = str(Path(__file__).parent / 'ppocr/utils/dict/table_dict.txt')
else:
params.rec_char_dict_path = str(Path(__file__).parent.parent / 'ppocr/utils/dict/table_dict.txt')
if params.structure_char_dict_path is None:
if os.path.exists(str(Path(__file__).parent / 'ppocr/utils/dict/table_structure_dict.txt')):
params.structure_char_dict_path = str(
Path(__file__).parent / 'ppocr/utils/dict/table_structure_dict.txt')
else:
params.structure_char_dict_path = str(
Path(__file__).parent.parent / 'ppocr/utils/dict/table_structure_dict.txt')
print(params)
super().__init__(params)
def __call__(self, img):
if isinstance(img, str):
# download net image
if img.startswith('http'):
download_with_progressbar(img, 'tmp.jpg')
img = 'tmp.jpg'
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
with open(image_file, 'rb') as f:
np_arr = np.frombuffer(f.read(), dtype=np.uint8)
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
res = super().__call__(img)
return res
def main():
# for cmd
args = parse_args(mMain=True)
image_dir = args.image_dir
save_folder = args.output
if image_dir.startswith('http'):
download_with_progressbar(image_dir, 'tmp.jpg')
image_file_list = ['tmp.jpg']
else:
image_file_list = get_image_file_list(args.image_dir)
if len(image_file_list) == 0:
logger.error('no images find in {}'.format(args.image_dir))
return
structure_engine = PaddleStructure(**(args.__dict__))
for img_path in image_file_list:
img_name = os.path.basename(img_path).split('.')[0]
logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
result = structure_engine(img_path)
for item in result:
logger.info(item['res'])
save_res(result, save_folder, img_name)
logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))

134
test/predict_system.py Normal file
View File

@ -0,0 +1,134 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import subprocess
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import logging
import layoutparser as lp
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from tools.infer.predict_system import TextSystem
from test.table.predict_table import TableSystem, to_excel
from test.utility import parse_args, draw_result
logger = get_logger()
class OCRSystem(object):
def __init__(self, args):
args.det_limit_type = 'resize_long'
args.drop_score = 0
if not args.show_log:
logger.setLevel(logging.INFO)
self.text_system = TextSystem(args)
self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer)
self.table_layout = lp.PaddleDetectionLayoutModel("lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
threshold=0.5, enable_mkldnn=args.enable_mkldnn,
enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads)
self.use_angle_cls = args.use_angle_cls
self.drop_score = args.drop_score
def __call__(self, img):
ori_im = img.copy()
layout_res = self.table_layout.detect(img[..., ::-1])
res_list = []
for region in layout_res:
x1, y1, x2, y2 = region.coordinates
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
roi_img = ori_im[y1:y2, x1:x2, :]
if region.type == 'Table':
res = self.table_system(roi_img)
else:
filter_boxes, filter_rec_res = self.text_system(roi_img)
filter_boxes = [x + [x1, y1] for x in filter_boxes]
filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes]
res = (filter_boxes, filter_rec_res)
res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'res': res})
return res_list
def save_res(res, save_folder, img_name):
excel_save_folder = os.path.join(save_folder, img_name)
os.makedirs(excel_save_folder, exist_ok=True)
# save res
for region in res:
if region['type'] == 'Table':
excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox']))
to_excel(region['res'], excel_path)
elif region['type'] == 'Figure':
pass
else:
with open(os.path.join(excel_save_folder, 'res.txt'), 'a', encoding='utf8') as f:
for box, rec_res in zip(region['res'][0], region['res'][1]):
f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res))
def main(args):
image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list
image_file_list = image_file_list[args.process_id::args.total_process_num]
save_folder = args.output
os.makedirs(save_folder, exist_ok=True)
structure_sys = OCRSystem(args)
img_num = len(image_file_list)
for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag = check_and_read_gif(image_file)
img_name = os.path.basename(image_file).split('.')[0]
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
continue
starttime = time.time()
res = structure_sys(img)
save_res(res, save_folder, img_name)
draw_img = draw_result(img, res, args.vis_font_path)
cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img)
logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
elapse = time.time() - starttime
logger.info("Predict time : {:.3f}s".format(elapse))
if __name__ == "__main__":
args = parse_args()
if args.use_mp:
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):
cmd = [sys.executable, "-u"] + sys.argv + [
"--process_id={}".format(process_id),
"--use_mp={}".format(False)
]
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
p_list.append(p)
for p in p_list:
p.wait()
else:
main(args)

72
test/setup.py Normal file
View File

@ -0,0 +1,72 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from setuptools import setup
from io import open
import shutil
with open('../requirements.txt', encoding="utf-8-sig") as f:
requirements = f.readlines()
requirements.append('tqdm')
requirements.append('layoutparser')
requirements.append('iopath')
def readme():
with open('api_ch.md', encoding="utf-8-sig") as f:
README = f.read()
return README
shutil.copytree('/table', './test/table')
shutil.copyfile('/predict_system.py', './test/predict_system.py')
shutil.copyfile('/utility.py', './test/utility.py')
shutil.copytree('../ppocr', './ppocr')
shutil.copytree('../tools', './tools')
shutil.copyfile('../LICENSE', './LICENSE')
setup(
name='paddlestructure',
packages=['paddlestructure'],
package_dir={'paddlestructure': ''},
include_package_data=True,
entry_points={"console_scripts": ["paddlestructure= paddlestructure.paddlestructure:main"]},
version='1.0',
install_requires=requirements,
license='Apache License 2.0',
description='Awesome OCR toolkits based on PaddlePaddle 8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',
long_description=readme(),
long_description_content_type='text/markdown',
url='https://github.com/PaddlePaddle/PaddleOCR',
download_url='https://github.com/PaddlePaddle/PaddleOCR.git',
keywords=[
'ocr textdetection textrecognition paddleocr crnn east star-net rosetta ocrlite db chineseocr chinesetextdetection chinesetextrecognition'
],
classifiers=[
'Intended Audience :: Developers', 'Operating System :: OS Independent',
'Natural Language :: Chinese (Simplified)',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7', 'Topic :: Utilities'
], )
shutil.rmtree('ppocr')
shutil.rmtree('tools')
shutil.rmtree('test')
os.remove('LICENSE')

49
test/table/README.md Normal file
View File

@ -0,0 +1,49 @@
# Table structure and content prediction
## 1. pipeline
The ocr of the table mainly contains three models
1. Single line text detection-DB
2. Single line text recognition-CRNN
3. Table structure and cell coordinate prediction-RARE
The table ocr flow chart is as follows
![tableocr_pipeline](../../doc/table/tableocr_pipeline.png)
1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
2. The table structure and cell coordinates is predicted by RARE model.
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.
## 2. How to use
### 2.1 Train
TBD
### 2.2 Eval
First cd to the PaddleOCR/ppstructure directory
The table uses TEDS (Tree-Edit-Distance-based Similarity) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
```json
{"PMC4289340_004_00.png": [["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]]}
```
In gt json, the key is the image name, the value is the corresponding gt, and gt is a list composed of four items, and each item is
1. HTML string list of table structure
2. The coordinates of each cell (not including the empty text in the cell)
3. The text information in each cell (not including the empty text in the cell)
4. The text information in each cell (including the empty text in the cell)
Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
### 2.3 Inference
First cd to the PaddleOCR/ppstructure directory
```python
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
After running, the excel sheet of each picture will be saved in the directory specified by the table_output field

49
test/table/README_ch.md Normal file
View File

@ -0,0 +1,49 @@
# 表格结构和内容预测
## 1. pipeline
表格的ocr主要包含三个模型
1. 单行文本检测-DB
2. 单行文本识别-CRNN
3. 表格结构和cell坐标预测-RARE
具体流程图如下
![tableocr_pipeline](../../doc/table/tableocr_pipeline.png)
1. 图片由单行文字检测检测模型到单行文字的坐标,然后送入识别模型拿到识别结果。
2. 图片由表格结构和cell坐标预测模型拿到表格的结构信息和单元格的坐标信息。
3. 由单行文字的坐标、识别结果和单元格的坐标一起组合出单元格的识别结果。
4. 单元格的识别结果和表格结构一起构造表格的html字符串。
## 2. 使用
### 2.1 训练
TBD
### 2.2 评估
先cd到PaddleOCR/ppstructure目录下
表格使用 TEDS(Tree-Edit-Distance-based Similarity) 作为模型的评估指标。在进行模型评估之前需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好)还需要准备评估的gt gt示例如下:
```json
{"PMC4289340_004_00.png": [["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]]}
```
json 中key为图片名value为对于的gtgt是一个由四个item组成的list每个item分别为
1. 表格结构的html字符串list
2. 每个cell的坐标 (不包括cell里文字为空的)
3. 每个cell里的文字信息 (不包括cell里文字为空的)
4. 每个cell里的文字信息 (包括cell里文字为空的)
准备完成后使用如下命令进行评估评估完成后会输出teds指标。
```python
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
### 2.3 预测
先cd到PaddleOCR/ppstructure目录下
```python
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
运行完成后每张图片的excel表格会保存到table_output字段指定的目录下

13
test/table/__init__.py Normal file
View File

@ -0,0 +1,13 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

72
test/table/eval_table.py Executable file
View File

@ -0,0 +1,72 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import cv2
import json
from tqdm import tqdm
from test.table.table_metric import TEDS
from test.table.predict_table import TableSystem
from test.utility import init_args
from ppocr.utils.logging import get_logger
logger = get_logger()
def parse_args():
parser = init_args()
parser.add_argument("--gt_path", type=str)
return parser.parse_args()
def main(gt_path, img_root, args):
teds = TEDS(n_jobs=16)
text_sys = TableSystem(args)
jsons_gt = json.load(open(gt_path)) # gt
pred_htmls = []
gt_htmls = []
for img_name in tqdm(jsons_gt):
# read image
img = cv2.imread(os.path.join(img_root,img_name))
pred_html = text_sys(img)
pred_htmls.append(pred_html)
gt_structures, gt_bboxes, gt_contents, contents_with_block = jsons_gt[img_name]
gt_html, gt = get_gt_html(gt_structures, contents_with_block)
gt_htmls.append(gt_html)
scores = teds.batch_evaluate_html(gt_htmls, pred_htmls)
logger.info('teds:', sum(scores) / len(scores))
def get_gt_html(gt_structures, contents_with_block):
end_html = []
td_index = 0
for tag in gt_structures:
if '</td>' in tag:
if contents_with_block[td_index] != []:
end_html.extend(contents_with_block[td_index])
end_html.append(tag)
td_index += 1
else:
end_html.append(tag)
return ''.join(end_html), end_html
if __name__ == '__main__':
args = parse_args()
main(args.gt_path,args.image_dir, args)

192
test/table/matcher.py Executable file
View File

@ -0,0 +1,192 @@
import json
def distance(box_1, box_2):
x1, y1, x2, y2 = box_1
x3, y3, x4, y4 = box_2
dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4- x2) + abs(y4 - y2)
dis_2 = abs(x3 - x1) + abs(y3 - y1)
dis_3 = abs(x4- x2) + abs(y4 - y2)
return dis + min(dis_2, dis_3)
def compute_iou(rec1, rec2):
"""
computing IoU
:param rec1: (y0, x0, y1, x1), which reflects
(top, left, bottom, right)
:param rec2: (y0, x0, y1, x1)
:return: scala value of IoU
"""
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0.0
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return (intersect / (sum_area - intersect))*1.0
def matcher_merge(ocr_bboxes, pred_bboxes):
all_dis = []
ious = []
matched = {}
for i, gt_box in enumerate(ocr_bboxes):
distances = []
for j, pred_box in enumerate(pred_bboxes):
# compute l1 distence and IOU between two boxes
distances.append((distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box)))
sorted_distances = distances.copy()
# select nearest cell
sorted_distances = sorted(sorted_distances, key = lambda item: (item[1], item[0]))
if distances.index(sorted_distances[0]) not in matched.keys():
matched[distances.index(sorted_distances[0])] = [i]
else:
matched[distances.index(sorted_distances[0])].append(i)
return matched#, sum(ious) / len(ious)
def complex_num(pred_bboxes):
complex_nums = []
for bbox in pred_bboxes:
distances = []
temp_ious = []
for pred_bbox in pred_bboxes:
if bbox != pred_bbox:
distances.append(distance(bbox, pred_bbox))
temp_ious.append(compute_iou(bbox, pred_bbox))
complex_nums.append(temp_ious[distances.index(min(distances))])
return sum(complex_nums) / len(complex_nums)
def get_rows(pred_bboxes):
pre_bbox = pred_bboxes[0]
res = []
step = 0
for i in range(len(pred_bboxes)):
bbox = pred_bboxes[i]
if bbox[1] - pre_bbox[1] > 2 or bbox[0] - pre_bbox[0] < 0:
break
else:
res.append(bbox)
step += 1
for i in range(step):
pred_bboxes.pop(0)
return res, pred_bboxes
def refine_rows(pred_bboxes): # 微调整行的框,使在一条水平线上
ys_1 = []
ys_2 = []
for box in pred_bboxes:
ys_1.append(box[1])
ys_2.append(box[3])
min_y_1 = sum(ys_1) / len(ys_1)
min_y_2 = sum(ys_2) / len(ys_2)
re_boxes = []
for box in pred_bboxes:
box[1] = min_y_1
box[3] = min_y_2
re_boxes.append(box)
return re_boxes
def matcher_refine_row(gt_bboxes, pred_bboxes):
before_refine_pred_bboxes = pred_bboxes.copy()
pred_bboxes = []
while(len(before_refine_pred_bboxes) != 0):
row_bboxes, before_refine_pred_bboxes = get_rows(before_refine_pred_bboxes)
print(row_bboxes)
pred_bboxes.extend(refine_rows(row_bboxes))
all_dis = []
ious = []
matched = {}
for i, gt_box in enumerate(gt_bboxes):
distances = []
#temp_ious = []
for j, pred_box in enumerate(pred_bboxes):
distances.append(distance(gt_box, pred_box))
#temp_ious.append(compute_iou(gt_box, pred_box))
#all_dis.append(min(distances))
#ious.append(temp_ious[distances.index(min(distances))])
if distances.index(min(distances)) not in matched.keys():
matched[distances.index(min(distances))] = [i]
else:
matched[distances.index(min(distances))].append(i)
return matched#, sum(ious) / len(ious)
#先挑选出一行,再进行匹配
def matcher_structure_1(gt_bboxes, pred_bboxes_rows, pred_bboxes):
gt_box_index = 0
delete_gt_bboxes = gt_bboxes.copy()
match_bboxes_ready = []
matched = {}
while(len(delete_gt_bboxes) != 0):
row_bboxes, delete_gt_bboxes = get_rows(delete_gt_bboxes)
row_bboxes = sorted(row_bboxes, key = lambda key: key[0])
if len(pred_bboxes_rows) > 0:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
print(row_bboxes)
for i, gt_box in enumerate(row_bboxes):
#print(gt_box)
pred_distances = []
distances = []
for pred_bbox in pred_bboxes:
pred_distances.append(distance(gt_box, pred_bbox))
for j, pred_box in enumerate(match_bboxes_ready):
distances.append(distance(gt_box, pred_box))
index = pred_distances.index(min(distances))
#print('index', index)
if index not in matched.keys():
matched[index] = [gt_box_index]
else:
matched[index].append(gt_box_index)
gt_box_index += 1
return matched
def matcher_structure(gt_bboxes, pred_bboxes_rows, pred_bboxes):
'''
gt_bboxes: 排序后
pred_bboxes:
'''
pre_bbox = gt_bboxes[0]
matched = {}
match_bboxes_ready = []
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
for i, gt_box in enumerate(gt_bboxes):
pred_distances = []
for pred_bbox in pred_bboxes:
pred_distances.append(distance(gt_box, pred_bbox))
distances = []
gap_pre = gt_box[1] - pre_bbox[1]
gap_pre_1 = gt_box[0] - pre_bbox[2]
#print(gap_pre, len(pred_bboxes_rows))
if (gap_pre_1 < 0 and len(pred_bboxes_rows) > 0):
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(pred_bboxes_rows) == 1:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) > 0:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) == 0:
break
#print(match_bboxes_ready)
for j, pred_box in enumerate(match_bboxes_ready):
distances.append(distance(gt_box, pred_box))
index = pred_distances.index(min(distances))
#print(gt_box, index)
#match_bboxes_ready.pop(distances.index(min(distances)))
print(gt_box, match_bboxes_ready[distances.index(min(distances))])
if index not in matched.keys():
matched[index] = [i]
else:
matched[index].append(i)
pre_bbox = gt_box
return matched

139
test/table/predict_structure.py Executable file
View File

@ -0,0 +1,139 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import math
import time
import traceback
import paddle
import tools.infer.utility as utility
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from test.utility import parse_args
logger = get_logger()
class TableStructurer(object):
def __init__(self, args):
pre_process_list = [{
'ResizeTableImage': {
'max_len': args.structure_max_len
}
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'PaddingTableImage': None
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image']
}
}]
postprocess_params = {
'name': 'TableLabelDecode',
"character_type": args.structure_char_type,
"character_dict_path": args.structure_char_dict_path,
}
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'structure', logger)
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
data = transform(data, self.preprocess_op)
img = data[0]
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
img = img.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
preds['structure_probs'] = outputs[1]
preds['loc_preds'] = outputs[0]
post_result = self.postprocess_op(preds)
structure_str_list = post_result['structure_str_list']
res_loc = post_result['res_loc']
imgh, imgw = ori_im.shape[0:2]
res_loc_final = []
for rno in range(len(res_loc[0])):
x0, y0, x1, y1 = res_loc[0][rno]
left = max(int(imgw * x0), 0)
top = max(int(imgh * y0), 0)
right = min(int(imgw * x1), imgw - 1)
bottom = min(int(imgh * y1), imgh - 1)
res_loc_final.append([left, top, right, bottom])
structure_str_list = structure_str_list[0][:-1]
structure_str_list = ['<html>', '<body>', '<table>'] + structure_str_list + ['</table>', '</body>', '</html>']
elapse = time.time() - starttime
return (structure_str_list, res_loc_final), elapse
def main(args):
image_file_list = get_image_file_list(args.image_dir)
table_structurer = TableStructurer(args)
count = 0
total_time = 0
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
structure_res, elapse = table_structurer(img)
logger.info("result: {}".format(structure_res))
if count > 0:
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
if __name__ == "__main__":
main(parse_args())

221
test/table/predict_table.py Normal file
View File

@ -0,0 +1,221 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import subprocess
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import time
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from test.table.matcher import distance, compute_iou
from test.utility import parse_args
import test.table.predict_structure as predict_strture
logger = get_logger()
def expand(pix, det_box, shape):
x0, y0, x1, y1 = det_box
# print(shape)
h, w, c = shape
tmp_x0 = x0 - pix
tmp_x1 = x1 + pix
tmp_y0 = y0 - pix
tmp_y1 = y1 + pix
x0_ = tmp_x0 if tmp_x0 >= 0 else 0
x1_ = tmp_x1 if tmp_x1 <= w else w
y0_ = tmp_y0 if tmp_y0 >= 0 else 0
y1_ = tmp_y1 if tmp_y1 <= h else h
return x0_, y0_, x1_, y1_
class TableSystem(object):
def __init__(self, args, text_detector=None, text_recognizer=None):
self.text_detector = predict_det.TextDetector(args) if text_detector is None else text_detector
self.text_recognizer = predict_rec.TextRecognizer(args) if text_recognizer is None else text_recognizer
self.table_structurer = predict_strture.TableStructurer(args)
def __call__(self, img):
ori_im = img.copy()
structure_res, elapse = self.table_structurer(copy.deepcopy(img))
dt_boxes, elapse = self.text_detector(copy.deepcopy(img))
dt_boxes = sorted_boxes(dt_boxes)
r_boxes = []
for box in dt_boxes:
x_min = box[:, 0].min() - 1
x_max = box[:, 0].max() + 1
y_min = box[:, 1].min() - 1
y_max = box[:, 1].max() + 1
box = [x_min, y_min, x_max, y_max]
r_boxes.append(box)
dt_boxes = np.array(r_boxes)
logger.debug("dt_boxes num : {}, elapse : {}".format(
len(dt_boxes), elapse))
if dt_boxes is None:
return None, None
img_crop_list = []
for i in range(len(dt_boxes)):
det_box = dt_boxes[i]
x0, y0, x1, y1 = expand(2, det_box, ori_im.shape)
text_rect = ori_im[int(y0):int(y1), int(x0):int(x1), :]
img_crop_list.append(text_rect)
rec_res, elapse = self.text_recognizer(img_crop_list)
logger.debug("rec_res num : {}, elapse : {}".format(
len(rec_res), elapse))
pred_html, pred = self.rebuild_table(structure_res, dt_boxes, rec_res)
return pred_html
def rebuild_table(self, structure_res, dt_boxes, rec_res):
pred_structures, pred_bboxes = structure_res
matched_index = self.match_result(dt_boxes, pred_bboxes)
pred_html, pred = self.get_pred_html(pred_structures, matched_index, rec_res)
return pred_html, pred
def match_result(self, dt_boxes, pred_bboxes):
matched = {}
for i, gt_box in enumerate(dt_boxes):
# gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
distances = []
for j, pred_box in enumerate(pred_bboxes):
distances.append(
(distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box))) # 获取两两cell之间的L1距离和 1- IOU
sorted_distances = distances.copy()
# 根据距离和IOU挑选最"近"的cell
sorted_distances = sorted(sorted_distances, key=lambda item: (item[1], item[0]))
if distances.index(sorted_distances[0]) not in matched.keys():
matched[distances.index(sorted_distances[0])] = [i]
else:
matched[distances.index(sorted_distances[0])].append(i)
return matched
def get_pred_html(self, pred_structures, matched_index, ocr_contents):
end_html = []
td_index = 0
for tag in pred_structures:
if '</td>' in tag:
if td_index in matched_index.keys():
b_with = False
if '<b>' in ocr_contents[matched_index[td_index][0]] and len(matched_index[td_index]) > 1:
b_with = True
end_html.extend('<b>')
for i, td_index_index in enumerate(matched_index[td_index]):
content = ocr_contents[td_index_index][0]
if len(matched_index[td_index]) > 1:
if len(content) == 0:
continue
if content[0] == ' ':
content = content[1:]
if '<b>' in content:
content = content[3:]
if '</b>' in content:
content = content[:-4]
if len(content) == 0:
continue
if i != len(matched_index[td_index]) - 1 and ' ' != content[-1]:
content += ' '
end_html.extend(content)
if b_with:
end_html.extend('</b>')
end_html.append(tag)
td_index += 1
else:
end_html.append(tag)
return ''.join(end_html), end_html
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def to_excel(html_table, excel_path):
from tablepyxl import tablepyxl
tablepyxl.document_to_xl(html_table, excel_path)
def main(args):
image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list[args.process_id::args.total_process_num]
os.makedirs(args.output, exist_ok=True)
text_sys = TableSystem(args)
img_num = len(image_file_list)
for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag = check_and_read_gif(image_file)
excel_path = os.path.join(args.output, os.path.basename(image_file).split('.')[0] + '.xlsx')
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
continue
starttime = time.time()
pred_html = text_sys(img)
to_excel(pred_html, excel_path)
logger.info('excel saved to {}'.format(excel_path))
logger.info(pred_html)
elapse = time.time() - starttime
logger.info("Predict time : {:.3f}s".format(elapse))
if __name__ == "__main__":
args = parse_args()
if args.use_mp:
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):
cmd = [sys.executable, "-u"] + sys.argv + [
"--process_id={}".format(process_id),
"--use_mp={}".format(False)
]
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
p_list.append(p)
for p in p_list:
p.wait()
else:
main(args)

View File

@ -0,0 +1,16 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['TEDS']
from .table_metric import TEDS

View File

@ -0,0 +1,51 @@
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
def parallel_process(array, function, n_jobs=16, use_kwargs=False, front_num=0):
"""
A parallel version of the map function with a progress bar.
Args:
array (array-like): An array to iterate over.
function (function): A python function to apply to the elements of array
n_jobs (int, default=16): The number of cores to use
use_kwargs (boolean, default=False): Whether to consider the elements of array as dictionaries of
keyword arguments to function
front_num (int, default=3): The number of iterations to run serially before kicking off the parallel job.
Useful for catching bugs
Returns:
[function(array[0]), function(array[1]), ...]
"""
# We run the first few iterations serially to catch bugs
if front_num > 0:
front = [function(**a) if use_kwargs else function(a)
for a in array[:front_num]]
else:
front = []
# If we set n_jobs to 1, just run a list comprehension. This is useful for benchmarking and debugging.
if n_jobs == 1:
return front + [function(**a) if use_kwargs else function(a) for a in tqdm(array[front_num:])]
# Assemble the workers
with ProcessPoolExecutor(max_workers=n_jobs) as pool:
# Pass the elements of array into function
if use_kwargs:
futures = [pool.submit(function, **a) for a in array[front_num:]]
else:
futures = [pool.submit(function, a) for a in array[front_num:]]
kwargs = {
'total': len(futures),
'unit': 'it',
'unit_scale': True,
'leave': True
}
# Print out the progress as tasks complete
for f in tqdm(as_completed(futures), **kwargs):
pass
out = []
# Get the results from the futures.
for i, future in tqdm(enumerate(futures)):
try:
out.append(future.result())
except Exception as e:
out.append(e)
return front + out

View File

@ -0,0 +1,247 @@
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the Apache 2.0 License.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Apache 2.0 License for more details.
import distance
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from .parallel import parallel_process
from tqdm import tqdm
class TableTree(Tree):
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation"""
if self.tag == 'td':
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
(self.tag, self.colspan, self.rowspan, self.content)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
#print(node1.tag)
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
#print(node1.content, )
return self.normalized_distance(node1.content, node2.content)
return 0.
class CustomConfig_del_short(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
#print('before')
#print(node1.content, node2.content)
#print('after')
node1_content = node1.content
node2_content = node2.content
if len(node1_content) < 3:
node1_content = ['####']
if len(node2_content) < 3:
node2_content = ['####']
return self.normalized_distance(node1_content, node2_content)
return 0.
class CustomConfig_del_block(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
node1_content = node1.content
node2_content = node2.content
while ' ' in node1_content:
print(node1_content.index(' '))
node1_content.pop(node1_content.index(' '))
while ' ' in node2_content:
print(node2_content.index(' '))
node2_content.pop(node2_content.index(' '))
return self.normalized_distance(node1_content, node2_content)
return 0.
class TEDS(object):
''' Tree Edit Distance basead Similarity
'''
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (
n_jobs >= 1), 'n_jobs must be an integer greather than 1'
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
''' Tokenizes table cells
'''
self.__tokens__.append('<%s>' % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != 'unk':
self.__tokens__.append('</%s>' % node.tag)
if node.tag != 'td' and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
''' Converts HTML tree to the format required by apted
'''
global __tokens__
if node.tag == 'td':
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(node.tag,
int(node.attrib.get('colspan', '1')),
int(node.attrib.get('rowspan', '1')),
cell, *deque())
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != 'td':
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
''' Computes TEDS score between the prediction and the ground truth of a
given sample
'''
if (not pred) or (not true):
return 0.0
parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath('body/table') and true.xpath('body/table'):
pred = pred.xpath('body/table')[0]
true = true.xpath('body/table')[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = APTED(tree_pred, tree_true,
CustomConfig()).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
def batch_evaluate(self, pred_json, true_json):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
@params pred_json: {'FILENAME': 'HTML CODE', ...}
@params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
@output: {'FILENAME': 'TEDS SCORE', ...}
'''
samples = true_json.keys()
if self.n_jobs == 1:
scores = [self.evaluate(pred_json.get(
filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
else:
inputs = [{'pred': pred_json.get(
filename, ''), 'true': true_json[filename]['html']} for filename in samples]
scores = parallel_process(
inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
scores = dict(zip(samples, scores))
return scores
def batch_evaluate_html(self, pred_htmls, true_htmls):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
'''
if self.n_jobs == 1:
scores = [self.evaluate(pred_html, true_html) for (
pred_html, true_html) in zip(pred_htmls, true_htmls)]
else:
inputs = [{"pred": pred_html, "true": true_html} for(
pred_html, true_html) in zip(pred_htmls, true_htmls)]
scores = parallel_process(
inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
return scores
if __name__ == '__main__':
import json
import pprint
with open('sample_pred.json') as fp:
pred_json = json.load(fp)
with open('sample_gt.json') as fp:
true_json = json.load(fp)
teds = TEDS(n_jobs=4)
scores = teds.batch_evaluate(pred_json, true_json)
pp = pprint.PrettyPrinter()
pp.pprint(scores)

View File

@ -0,0 +1,13 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,283 @@
# This is where we handle translating css styles into openpyxl styles
# and cascading those from parent to child in the dom.
from openpyxl.cell import cell
from openpyxl.styles import Font, Alignment, PatternFill, NamedStyle, Border, Side, Color
from openpyxl.styles.fills import FILL_SOLID
from openpyxl.styles.numbers import FORMAT_CURRENCY_USD_SIMPLE, FORMAT_PERCENTAGE
from openpyxl.styles.colors import BLACK
FORMAT_DATE_MMDDYYYY = 'mm/dd/yyyy'
def colormap(color):
"""
Convenience for looking up known colors
"""
cmap = {'black': BLACK}
return cmap.get(color, color)
def style_string_to_dict(style):
"""
Convert css style string to a python dictionary
"""
def clean_split(string, delim):
return (s.strip() for s in string.split(delim))
styles = [clean_split(s, ":") for s in style.split(";") if ":" in s]
return dict(styles)
def get_side(style, name):
return {'border_style': style.get('border-{}-style'.format(name)),
'color': colormap(style.get('border-{}-color'.format(name)))}
known_styles = {}
def style_dict_to_named_style(style_dict, number_format=None):
"""
Change css style (stored in a python dictionary) to openpyxl NamedStyle
"""
style_and_format_string = str({
'style_dict': style_dict,
'parent': style_dict.parent,
'number_format': number_format,
})
if style_and_format_string not in known_styles:
# Font
font = Font(bold=style_dict.get('font-weight') == 'bold',
color=style_dict.get_color('color', None),
size=style_dict.get('font-size'))
# Alignment
alignment = Alignment(horizontal=style_dict.get('text-align', 'general'),
vertical=style_dict.get('vertical-align'),
wrap_text=style_dict.get('white-space', 'nowrap') == 'normal')
# Fill
bg_color = style_dict.get_color('background-color')
fg_color = style_dict.get_color('foreground-color', Color())
fill_type = style_dict.get('fill-type')
if bg_color and bg_color != 'transparent':
fill = PatternFill(fill_type=fill_type or FILL_SOLID,
start_color=bg_color,
end_color=fg_color)
else:
fill = PatternFill()
# Border
border = Border(left=Side(**get_side(style_dict, 'left')),
right=Side(**get_side(style_dict, 'right')),
top=Side(**get_side(style_dict, 'top')),
bottom=Side(**get_side(style_dict, 'bottom')),
diagonal=Side(**get_side(style_dict, 'diagonal')),
diagonal_direction=None,
outline=Side(**get_side(style_dict, 'outline')),
vertical=None,
horizontal=None)
name = 'Style {}'.format(len(known_styles) + 1)
pyxl_style = NamedStyle(name=name, font=font, fill=fill, alignment=alignment, border=border,
number_format=number_format)
known_styles[style_and_format_string] = pyxl_style
return known_styles[style_and_format_string]
class StyleDict(dict):
"""
It's like a dictionary, but it looks for items in the parent dictionary
"""
def __init__(self, *args, **kwargs):
self.parent = kwargs.pop('parent', None)
super(StyleDict, self).__init__(*args, **kwargs)
def __getitem__(self, item):
if item in self:
return super(StyleDict, self).__getitem__(item)
elif self.parent:
return self.parent[item]
else:
raise KeyError('{} not found'.format(item))
def __hash__(self):
return hash(tuple([(k, self.get(k)) for k in self._keys()]))
# Yielding the keys avoids creating unnecessary data structures
# and happily works with both python2 and python3 where the
# .keys() method is a dictionary_view in python3 and a list in python2.
def _keys(self):
yielded = set()
for k in self.keys():
yielded.add(k)
yield k
if self.parent:
for k in self.parent._keys():
if k not in yielded:
yielded.add(k)
yield k
def get(self, k, d=None):
try:
return self[k]
except KeyError:
return d
def get_color(self, k, d=None):
"""
Strip leading # off colors if necessary
"""
color = self.get(k, d)
if hasattr(color, 'startswith') and color.startswith('#'):
color = color[1:]
if len(color) == 3: # Premailers reduces colors like #00ff00 to #0f0, openpyxl doesn't like that
color = ''.join(2 * c for c in color)
return color
class Element(object):
"""
Our base class for representing an html element along with a cascading style.
The element is created along with a parent so that the StyleDict that we store
can point to the parent's StyleDict.
"""
def __init__(self, element, parent=None):
self.element = element
self.number_format = None
parent_style = parent.style_dict if parent else None
self.style_dict = StyleDict(style_string_to_dict(element.get('style', '')), parent=parent_style)
self._style_cache = None
def style(self):
"""
Turn the css styles for this element into an openpyxl NamedStyle.
"""
if not self._style_cache:
self._style_cache = style_dict_to_named_style(self.style_dict, number_format=self.number_format)
return self._style_cache
def get_dimension(self, dimension_key):
"""
Extracts the dimension from the style dict of the Element and returns it as a float.
"""
dimension = self.style_dict.get(dimension_key)
if dimension:
if dimension[-2:] in ['px', 'em', 'pt', 'in', 'cm']:
dimension = dimension[:-2]
dimension = float(dimension)
return dimension
class Table(Element):
"""
The concrete implementations of Elements are semantically named for the types of elements we are interested in.
This defines a very concrete tree structure for html tables that we expect to deal with. I prefer this compared to
allowing Element to have an arbitrary number of children and dealing with an abstract element tree.
"""
def __init__(self, table):
"""
takes an html table object (from lxml)
"""
super(Table, self).__init__(table)
table_head = table.find('thead')
self.head = TableHead(table_head, parent=self) if table_head is not None else None
table_body = table.find('tbody')
self.body = TableBody(table_body if table_body is not None else table, parent=self)
class TableHead(Element):
"""
This class maps to the `<th>` element of the html table.
"""
def __init__(self, head, parent=None):
super(TableHead, self).__init__(head, parent=parent)
self.rows = [TableRow(tr, parent=self) for tr in head.findall('tr')]
class TableBody(Element):
"""
This class maps to the `<tbody>` element of the html table.
"""
def __init__(self, body, parent=None):
super(TableBody, self).__init__(body, parent=parent)
self.rows = [TableRow(tr, parent=self) for tr in body.findall('tr')]
class TableRow(Element):
"""
This class maps to the `<tr>` element of the html table.
"""
def __init__(self, tr, parent=None):
super(TableRow, self).__init__(tr, parent=parent)
self.cells = [TableCell(cell, parent=self) for cell in tr.findall('th') + tr.findall('td')]
def element_to_string(el):
return _element_to_string(el).strip()
def _element_to_string(el):
string = ''
for x in el.iterchildren():
string += '\n' + _element_to_string(x)
text = el.text.strip() if el.text else ''
tail = el.tail.strip() if el.tail else ''
return text + string + '\n' + tail
class TableCell(Element):
"""
This class maps to the `<td>` element of the html table.
"""
CELL_TYPES = {'TYPE_STRING', 'TYPE_FORMULA', 'TYPE_NUMERIC', 'TYPE_BOOL', 'TYPE_CURRENCY', 'TYPE_PERCENTAGE',
'TYPE_NULL', 'TYPE_INLINE', 'TYPE_ERROR', 'TYPE_FORMULA_CACHE_STRING', 'TYPE_INTEGER'}
def __init__(self, cell, parent=None):
super(TableCell, self).__init__(cell, parent=parent)
self.value = element_to_string(cell)
self.number_format = self.get_number_format()
def data_type(self):
cell_types = self.CELL_TYPES & set(self.element.get('class', '').split())
if cell_types:
if 'TYPE_FORMULA' in cell_types:
# Make sure TYPE_FORMULA takes precedence over the other classes in the set.
cell_type = 'TYPE_FORMULA'
elif cell_types & {'TYPE_CURRENCY', 'TYPE_INTEGER', 'TYPE_PERCENTAGE'}:
cell_type = 'TYPE_NUMERIC'
else:
cell_type = cell_types.pop()
else:
cell_type = 'TYPE_STRING'
return getattr(cell, cell_type)
def get_number_format(self):
if 'TYPE_CURRENCY' in self.element.get('class', '').split():
return FORMAT_CURRENCY_USD_SIMPLE
if 'TYPE_INTEGER' in self.element.get('class', '').split():
return '#,##0'
if 'TYPE_PERCENTAGE' in self.element.get('class', '').split():
return FORMAT_PERCENTAGE
if 'TYPE_DATE' in self.element.get('class', '').split():
return FORMAT_DATE_MMDDYYYY
if self.data_type() == cell.TYPE_NUMERIC:
try:
int(self.value)
except ValueError:
return '#,##0.##'
else:
return '#,##0'
def format(self, cell):
cell.style = self.style()
data_type = self.data_type()
if data_type:
cell.data_type = data_type

View File

@ -0,0 +1,118 @@
# Do imports like python3 so our package works for 2 and 3
from __future__ import absolute_import
from lxml import html
from openpyxl import Workbook
from openpyxl.utils import get_column_letter
from premailer import Premailer
from tablepyxl.style import Table
def string_to_int(s):
if s.isdigit():
return int(s)
return 0
def get_Tables(doc):
tree = html.fromstring(doc)
comments = tree.xpath('//comment()')
for comment in comments:
comment.drop_tag()
return [Table(table) for table in tree.xpath('//table')]
def write_rows(worksheet, elem, row, column=1):
"""
Writes every tr child element of elem to a row in the worksheet
returns the next row after all rows are written
"""
from openpyxl.cell.cell import MergedCell
initial_column = column
for table_row in elem.rows:
for table_cell in table_row.cells:
cell = worksheet.cell(row=row, column=column)
while isinstance(cell, MergedCell):
column += 1
cell = worksheet.cell(row=row, column=column)
colspan = string_to_int(table_cell.element.get("colspan", "1"))
rowspan = string_to_int(table_cell.element.get("rowspan", "1"))
if rowspan > 1 or colspan > 1:
worksheet.merge_cells(start_row=row, start_column=column,
end_row=row + rowspan - 1, end_column=column + colspan - 1)
cell.value = table_cell.value
table_cell.format(cell)
min_width = table_cell.get_dimension('min-width')
max_width = table_cell.get_dimension('max-width')
if colspan == 1:
# Initially, when iterating for the first time through the loop, the width of all the cells is None.
# As we start filling in contents, the initial width of the cell (which can be retrieved by:
# worksheet.column_dimensions[get_column_letter(column)].width) is equal to the width of the previous
# cell in the same column (i.e. width of A2 = width of A1)
width = max(worksheet.column_dimensions[get_column_letter(column)].width or 0, len(table_cell.value) + 2)
if max_width and width > max_width:
width = max_width
elif min_width and width < min_width:
width = min_width
worksheet.column_dimensions[get_column_letter(column)].width = width
column += colspan
row += 1
column = initial_column
return row
def table_to_sheet(table, wb):
"""
Takes a table and workbook and writes the table to a new sheet.
The sheet title will be the same as the table attribute name.
"""
ws = wb.create_sheet(title=table.element.get('name'))
insert_table(table, ws, 1, 1)
def document_to_workbook(doc, wb=None, base_url=None):
"""
Takes a string representation of an html document and writes one sheet for
every table in the document.
The workbook is returned
"""
if not wb:
wb = Workbook()
wb.remove(wb.active)
inline_styles_doc = Premailer(doc, base_url=base_url, remove_classes=False).transform()
tables = get_Tables(inline_styles_doc)
for table in tables:
table_to_sheet(table, wb)
return wb
def document_to_xl(doc, filename, base_url=None):
"""
Takes a string representation of an html document and writes one sheet for
every table in the document. The workbook is written out to a file called filename
"""
wb = document_to_workbook(doc, base_url=base_url)
wb.save(filename)
def insert_table(table, worksheet, column, row):
if table.head:
row = write_rows(worksheet, table.head, row, column)
if table.body:
row = write_rows(worksheet, table.body, row, column)
def insert_table_at_cell(table, cell):
"""
Inserts a table at the location of an openpyxl Cell object.
"""
ws = cell.parent
column, row = cell.column, cell.row
insert_table(table, ws, column, row)

54
test/utility.py Normal file
View File

@ -0,0 +1,54 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from PIL import Image
import numpy as np
from tools.infer.utility import draw_ocr_box_txt, init_args as infer_args
def init_args():
parser = infer_args()
# params for output
parser.add_argument("--output", type=str, default='./output/table')
# params for table structure
parser.add_argument("--structure_max_len", type=int, default=488)
parser.add_argument("--structure_model_dir", type=str)
parser.add_argument("--structure_char_type", type=str, default='en')
parser.add_argument("--structure_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt")
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def draw_result(image, result, font_path):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
boxes, txts, scores = [], [], []
for region in result:
if region['type'] == 'Table':
pass
elif region['type'] == 'Figure':
pass
else:
for box, rec_res in zip(region['res'][0], region['res'][1]):
boxes.append(np.array(box).reshape(-1, 2))
txts.append(rec_res[0])
scores.append(rec_res[1])
im_show = draw_ocr_box_txt(image, boxes, txts, scores, font_path=font_path,drop_score=0)
return im_show

View File

@ -43,7 +43,7 @@ class TextDetector(object):
pre_process_list = [{ pre_process_list = [{
'DetResizeForTest': { 'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len, 'limit_side_len': args.det_limit_side_len,
'limit_type': args.det_limit_type 'limit_type': args.det_limit_type,
} }
}, { }, {
'NormalizeImage': { 'NormalizeImage': {

View File

@ -24,6 +24,7 @@ import cv2
import copy import copy
import numpy as np import numpy as np
import time import time
import logging
from PIL import Image from PIL import Image
import tools.infer.utility as utility import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec import tools.infer.predict_rec as predict_rec
@ -38,6 +39,9 @@ logger = get_logger()
class TextSystem(object): class TextSystem(object):
def __init__(self, args): def __init__(self, args):
if not args.show_log:
logger.setLevel(logging.INFO)
self.text_detector = predict_det.TextDetector(args) self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args) self.text_recognizer = predict_rec.TextRecognizer(args)
self.use_angle_cls = args.use_angle_cls self.use_angle_cls = args.use_angle_cls
@ -88,7 +92,7 @@ class TextSystem(object):
ori_im = img.copy() ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img) dt_boxes, elapse = self.text_detector(img)
logger.info("dt_boxes num : {}, elapse : {}".format( logger.debug("dt_boxes num : {}, elapse : {}".format(
len(dt_boxes), elapse)) len(dt_boxes), elapse))
if dt_boxes is None: if dt_boxes is None:
@ -104,11 +108,11 @@ class TextSystem(object):
if self.use_angle_cls and cls: if self.use_angle_cls and cls:
img_crop_list, angle_list, elapse = self.text_classifier( img_crop_list, angle_list, elapse = self.text_classifier(
img_crop_list) img_crop_list)
logger.info("cls num : {}, elapse : {}".format( logger.debug("cls num : {}, elapse : {}".format(
len(img_crop_list), elapse)) len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list) rec_res, elapse = self.text_recognizer(img_crop_list)
logger.info("rec_res num : {}, elapse : {}".format( logger.debug("rec_res num : {}, elapse : {}".format(
len(rec_res), elapse)) len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res) # self.print_draw_crop_rec_res(img_crop_list, rec_res)
filter_boxes, filter_rec_res = [], [] filter_boxes, filter_rec_res = [], []

View File

@ -109,11 +109,12 @@ def init_args():
parser.add_argument("--use_mp", type=str2bool, default=False) parser.add_argument("--use_mp", type=str2bool, default=False)
parser.add_argument("--total_process_num", type=int, default=1) parser.add_argument("--total_process_num", type=int, default=1)
parser.add_argument("--process_id", type=int, default=0) parser.add_argument("--process_id", type=int, default=0)
parser.add_argument("--benchmark", type=bool, default=False) parser.add_argument("--benchmark", type=bool, default=False)
parser.add_argument("--save_log_path", type=str, default="./log_output/") parser.add_argument("--save_log_path", type=str, default="./log_output/")
parser.add_argument("--show_log", type=str2bool, default=True)
return parser return parser
@ -199,6 +200,8 @@ def create_predictor(args, mode, logger):
model_dir = args.cls_model_dir model_dir = args.cls_model_dir
elif mode == 'rec': elif mode == 'rec':
model_dir = args.rec_model_dir model_dir = args.rec_model_dir
elif mode == 'structure':
model_dir = args.structure_model_dir
else: else:
model_dir = args.e2e_model_dir model_dir = args.e2e_model_dir
@ -328,7 +331,9 @@ def create_predictor(args, mode, logger):
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False) config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
if mode == 'structure':
config.switch_ir_optim(False)
# create predictor # create predictor
predictor = inference.create_predictor(config) predictor = inference.create_predictor(config)
input_names = predictor.get_input_names() input_names = predictor.get_input_names()