commit
ed4b270815
|
@ -12,7 +12,9 @@ Global:
|
||||||
image_shape: [3, 640, 640]
|
image_shape: [3, 640, 640]
|
||||||
reader_yml: ./configs/det/det_db_icdar15_reader.yml
|
reader_yml: ./configs/det/det_db_icdar15_reader.yml
|
||||||
pretrain_weights: ./pretrain_models/MobileNetV3_pretrained/MobileNetV3_large_x0_5_pretrained/
|
pretrain_weights: ./pretrain_models/MobileNetV3_pretrained/MobileNetV3_large_x0_5_pretrained/
|
||||||
|
checkpoints:
|
||||||
save_res_path: ./output/predicts_db.txt
|
save_res_path: ./output/predicts_db.txt
|
||||||
|
save_inference_dir:
|
||||||
|
|
||||||
Architecture:
|
Architecture:
|
||||||
function: ppocr.modeling.architectures.det_model,DetModel
|
function: ppocr.modeling.architectures.det_model,DetModel
|
||||||
|
|
|
@ -0,0 +1,151 @@
|
||||||
|
|
||||||
|
# 简介
|
||||||
|
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
|
||||||
|
|
||||||
|
## 特性:
|
||||||
|
- 超轻量级模型
|
||||||
|
- (检测模型4.1M + 识别模型4.5M = 8.6M)
|
||||||
|
- 支持竖排文字识别
|
||||||
|
- (单模型同时支持横排和竖排文字识别)
|
||||||
|
- 支持长文本识别
|
||||||
|
- 支持中英文数字组合识别
|
||||||
|
- 提供训练代码
|
||||||
|
- 支持模型部署
|
||||||
|
|
||||||
|
|
||||||
|
## 文档教程
|
||||||
|
- [快速安装](./doc/installation.md)
|
||||||
|
- [文本识别模型训练/评估/预测](./doc/detection.md)
|
||||||
|
- [文本预测模型训练/评估/预测](./doc/recognition.md)
|
||||||
|
- [基于inference model预测](./doc/)
|
||||||
|
|
||||||
|
### **快速开始**
|
||||||
|
|
||||||
|
下载inference模型
|
||||||
|
```
|
||||||
|
# 创建inference模型保存目录
|
||||||
|
mkdir inference && cd inference && mkdir det && mkdir rec
|
||||||
|
# 下载检测inference模型
|
||||||
|
wget -P ./inference/det 检测inference模型链接
|
||||||
|
# 下载识别inference模型
|
||||||
|
wget -P ./inferencee/rec 识别inference模型链接
|
||||||
|
```
|
||||||
|
|
||||||
|
实现文本检测、识别串联推理,预测$image_dir$指定的单张图像:
|
||||||
|
```
|
||||||
|
export PYTHONPATH=.
|
||||||
|
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||||||
|
```
|
||||||
|
在执行预测时,通过参数det_model_dir以及rec_model_dir设置存储inference 模型的路径。
|
||||||
|
|
||||||
|
实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像:
|
||||||
|
```
|
||||||
|
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 文本检测算法:
|
||||||
|
|
||||||
|
PaddleOCR开源的文本检测算法列表:
|
||||||
|
- [x] [EAST](https://arxiv.org/abs/1704.03155)
|
||||||
|
- [x] [DB](https://arxiv.org/abs/1911.08947)
|
||||||
|
- [ ] [SAST](https://arxiv.org/abs/1908.05498)
|
||||||
|
|
||||||
|
|
||||||
|
算法效果:
|
||||||
|
|模型|骨干网络|Hmean|
|
||||||
|
|-|-|-|
|
||||||
|
|EAST|ResNet50_vd|85.85%|
|
||||||
|
|EAST|MobileNetV3|79.08%|
|
||||||
|
|DB|ResNet50_vd|83.30%|
|
||||||
|
|DB|MobileNetV3|73.00%|
|
||||||
|
|
||||||
|
PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)。
|
||||||
|
|
||||||
|
## 文本识别算法:
|
||||||
|
|
||||||
|
PaddleOCR开源的文本识别算法列表:
|
||||||
|
- [x] [CRNN](https://arxiv.org/abs/1507.05717)
|
||||||
|
- [x] [DTRB](https://arxiv.org/abs/1904.01906)
|
||||||
|
- [ ] [Rosetta](https://arxiv.org/abs/1910.05085)
|
||||||
|
- [ ] [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
|
||||||
|
- [ ] [RARE](https://arxiv.org/abs/1603.03915v1)
|
||||||
|
- [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研)
|
||||||
|
|
||||||
|
算法效果如下表所示,精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。
|
||||||
|
|
||||||
|
|模型|骨干网络|ACC|
|
||||||
|
|-|-|-|
|
||||||
|
|Rosetta|Resnet34_vd|80.24%|
|
||||||
|
|Rosetta|MobileNetV3|78.16%|
|
||||||
|
|CRNN|Resnet34_vd|82.20%|
|
||||||
|
|CRNN|MobileNetV3|79.37%|
|
||||||
|
|STAR-Net|Resnet34_vd|83.93%|
|
||||||
|
|STAR-Net|MobileNetV3|81.56%|
|
||||||
|
|RARE|Resnet34_vd|84.90%|
|
||||||
|
|RARE|MobileNetV3|83.32%|
|
||||||
|
|
||||||
|
PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)。
|
||||||
|
|
||||||
|
## TODO
|
||||||
|
**端到端OCR算法**
|
||||||
|
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
|
||||||
|
- [ ] End2End-PSL (comming soon)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# 参考文献
|
||||||
|
```
|
||||||
|
1. EAST:
|
||||||
|
@inproceedings{zhou2017east,
|
||||||
|
title={EAST: an efficient and accurate scene text detector},
|
||||||
|
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
|
||||||
|
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={5551--5560},
|
||||||
|
year={2017}
|
||||||
|
}
|
||||||
|
|
||||||
|
2. DB:
|
||||||
|
@article{liao2019real,
|
||||||
|
title={Real-time Scene Text Detection with Differentiable Binarization},
|
||||||
|
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
||||||
|
journal={arXiv preprint arXiv:1911.08947},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
3. DTRB:
|
||||||
|
@inproceedings{baek2019wrong,
|
||||||
|
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
|
||||||
|
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
|
||||||
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||||||
|
pages={4715--4723},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
4. SAST:
|
||||||
|
@inproceedings{wang2019single,
|
||||||
|
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
|
||||||
|
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
|
||||||
|
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
|
||||||
|
pages={1277--1285},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
5. SRN:
|
||||||
|
@article{yu2020towards,
|
||||||
|
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
|
||||||
|
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
|
||||||
|
journal={arXiv preprint arXiv:2003.12294},
|
||||||
|
year={2020}
|
||||||
|
}
|
||||||
|
|
||||||
|
6. end2end-psl:
|
||||||
|
@inproceedings{sun2019chinese,
|
||||||
|
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
|
||||||
|
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
|
||||||
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||||||
|
pages={9086--9095},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
```
|
|
@ -0,0 +1,79 @@
|
||||||
|
# 文字检测
|
||||||
|
|
||||||
|
本节以icdar15数据集为例,介绍PaddleOCR中检测模型的训练、评估与测试。
|
||||||
|
|
||||||
|
## 数据准备
|
||||||
|
icdar2015数据集可以从[官网](https://rrc.cvc.uab.es/?ch=4&com=downloads)下载到,首次下载需注册。
|
||||||
|
|
||||||
|
将下载到的数据集解压到工作目录下,假设解压在/PaddleOCR/train_data/ 下。另外,PaddleOCR将零散的标注文件整理成单独的标注文件
|
||||||
|
,您可以通过wget的方式进行下载。
|
||||||
|
```
|
||||||
|
wget -P /PaddleOCR/train_data/ 训练标注文件链接
|
||||||
|
wget -P /PaddleOCR/train_data/ 测试标注文件链接
|
||||||
|
```
|
||||||
|
|
||||||
|
解压数据集和下载标注文件后,/PaddleOCR/train_data/ 有两个文件夹和两个文件,分别是:
|
||||||
|
```
|
||||||
|
/PaddleOCR/train_data/
|
||||||
|
└─ icdar_c4_train_imgs/ icdar数据集的训练数据
|
||||||
|
└─ ch4_test_images/ icdar数据集的测试数据
|
||||||
|
└─ train_icdar2015_label.txt icdar数据集的训练标注
|
||||||
|
└─ test_icdar2015_label.txt icdar数据集的测试标注
|
||||||
|
```
|
||||||
|
|
||||||
|
提供的标注文件格式为:
|
||||||
|
```
|
||||||
|
" 图像文件名 json.dumps编码的图像标注信息"
|
||||||
|
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]
|
||||||
|
```
|
||||||
|
json.dumps编码前的图像标注信息是包含多个字典的list,字典中的$points$表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。
|
||||||
|
$transcription$表示当前文本框的文字,在文本检测任务中并不需要这个信息。
|
||||||
|
如果您想在其他数据集上训练PaddleOCR,可以按照上述形式构建标注文件。
|
||||||
|
|
||||||
|
|
||||||
|
## 快速启动训练
|
||||||
|
|
||||||
|
首先下载pretrain model,PaddleOCR的检测模型目前支持两种backbone,分别是MobileNetV3、ResNet50_vd,
|
||||||
|
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。
|
||||||
|
```
|
||||||
|
cd PaddleOCR/
|
||||||
|
# 下载MobileNetV3的预训练模型
|
||||||
|
wget -P /PaddleOCR/pretrain_models/ 模型链接
|
||||||
|
# 下载ResNet50的预训练模型
|
||||||
|
wget -P /PaddleOCR/pretrain_models/ 模型链接
|
||||||
|
```
|
||||||
|
|
||||||
|
**启动训练**
|
||||||
|
```
|
||||||
|
python3 tools/train.py -c configs/det/det_db_mv3.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。
|
||||||
|
有关配置文件的详细解释,请参考[链接]()。
|
||||||
|
|
||||||
|
您也可以通过-o参数在不需要修改yml文件的情况下,改变训练的参数,比如,调整训练的学习率为0.0001
|
||||||
|
```
|
||||||
|
python3 tools/train.py -c configs/det/det_db_mv3.yml -o Optimizer.base_lr=0.0001
|
||||||
|
```
|
||||||
|
|
||||||
|
## 指标评估
|
||||||
|
|
||||||
|
PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean。
|
||||||
|
|
||||||
|
运行如下代码,根据配置文件det_db_mv3.yml中save_res_path指定的测试集检测结果文件,计算评估指标。
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 tools/eval.py -c configs/det/det_db_mv3.yml -o Gloabl.checkpoints="./output/best_accuracy"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 测试检测效果
|
||||||
|
|
||||||
|
测试单张图像的检测效果
|
||||||
|
```
|
||||||
|
python3 tools/infer_det.py -c config/det/det_db_mv3.yml -o TestReader.single_img_path="./demo.jpg"
|
||||||
|
```
|
||||||
|
|
||||||
|
测试文件夹下所有图像的检测效果
|
||||||
|
```
|
||||||
|
python3 tools/infer_det.py -c config/det/det_db_mv3.yml -o TestReader.single_img_path="./demo_img/"
|
||||||
|
```
|
|
@ -0,0 +1,58 @@
|
||||||
|
|
||||||
|
# 基于inference model的推理
|
||||||
|
|
||||||
|
inference 模型(fluid.io.save_inference_model保存的模型)
|
||||||
|
一般是模型训练完成后保存的固化模型,多用于预测部署。
|
||||||
|
训练过程中保存的模型是checkpoints模型,保存的是模型的参数,多用于恢复训练等。
|
||||||
|
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越。
|
||||||
|
|
||||||
|
PaddleOCR提供了将checkpoints转换成inference model的实现。
|
||||||
|
|
||||||
|
|
||||||
|
## 文本检测模型推理
|
||||||
|
|
||||||
|
将文本检测模型训练过程中保存的模型,转换成inference model,可以使用如下命令:
|
||||||
|
|
||||||
|
```
|
||||||
|
python tools/export_model.py -c configs/det/det_db_mv3.yml -o Global.checkpoints="./output/best_accuracy" \
|
||||||
|
Global.save_inference_dir="./inference/det/"
|
||||||
|
```
|
||||||
|
|
||||||
|
推理模型保存在$./inference/det/model$, $./inference/det/params$
|
||||||
|
|
||||||
|
使用保存的inference model实现在单张图像上的预测:
|
||||||
|
|
||||||
|
```
|
||||||
|
python tools/infer/predict_det.py --image_dir="/demo.jpg" --det_model_dir="./inference/det/"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## 文本识别模型推理
|
||||||
|
|
||||||
|
将文本识别模型训练过程中保存的模型,转换成inference model,可以使用如下命令:
|
||||||
|
|
||||||
|
```
|
||||||
|
python tools/export_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints="./output/best_accuracy" \
|
||||||
|
Global.save_inference_dir="./inference/rec/"
|
||||||
|
```
|
||||||
|
|
||||||
|
推理模型保存在$./inference/rec/model$, $./inference/rec/params$
|
||||||
|
|
||||||
|
使用保存的inference model实现在单张图像上的预测:
|
||||||
|
|
||||||
|
```
|
||||||
|
python tools/infer/predict_rec.py --image_dir="/demo.jpg" --rec_model_dir="./inference/rec/"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 文本检测、识别串联推理
|
||||||
|
|
||||||
|
实现文本检测、识别串联推理,预测$image_dir$指定的单张图像:
|
||||||
|
```
|
||||||
|
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||||||
|
```
|
||||||
|
|
||||||
|
实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像:
|
||||||
|
|
||||||
|
```
|
||||||
|
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
|
||||||
|
```
|
|
@ -0,0 +1,27 @@
|
||||||
|
## 快速安装
|
||||||
|
|
||||||
|
建议使用我们提供的docker运行PaddleOCR,有关docker使用请参考[链接](https://docs.docker.com/get-started/)。
|
||||||
|
1. 准备docker环境。第一次使用这个镜像,会自动下载该镜像,请耐心等待。
|
||||||
|
```
|
||||||
|
# 切换到工作目录下
|
||||||
|
cd /home/Projects
|
||||||
|
# 首次运行需创建一个docker容器,再次运行时不需要运行当前命令
|
||||||
|
# 创建一个名字为pdocr的docker容器,并将当前目录映射到容器的/data目录下
|
||||||
|
sudo nvidia-docker run --name pdocr -v $PWD:/data --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
|
||||||
|
|
||||||
|
# ctrl+P+Q可退出docker,重新进入docker使用如下命令
|
||||||
|
sudo nvidia-docker container exec -it pdocr /bin/bash
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
2. 克隆PaddleOCR repo代码
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/PaddleOCR
|
||||||
|
```
|
||||||
|
|
||||||
|
3. 安装第三方库
|
||||||
|
```
|
||||||
|
cd PaddleOCR
|
||||||
|
pip3 install --upgrade pip
|
||||||
|
pip3 install -r requirements.txt
|
||||||
|
```
|
|
@ -22,6 +22,7 @@ import string
|
||||||
from ppocr.utils.utility import initial_logger
|
from ppocr.utils.utility import initial_logger
|
||||||
logger = initial_logger()
|
logger = initial_logger()
|
||||||
from ppocr.utils.utility import create_module
|
from ppocr.utils.utility import create_module
|
||||||
|
from ppocr.utils.utility import get_image_file_list
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,16 +73,8 @@ class EvalTestReader(object):
|
||||||
self.params)
|
self.params)
|
||||||
batch_size = self.params['test_batch_size_per_card']
|
batch_size = self.params['test_batch_size_per_card']
|
||||||
|
|
||||||
flag_test_single_img = False
|
|
||||||
if mode == "test":
|
|
||||||
single_img_path = self.params['single_img_path']
|
|
||||||
if single_img_path is not None:
|
|
||||||
flag_test_single_img = True
|
|
||||||
|
|
||||||
img_list = []
|
img_list = []
|
||||||
if flag_test_single_img:
|
if mode != "test":
|
||||||
img_list.append([single_img_path, single_img_path])
|
|
||||||
else:
|
|
||||||
img_set_dir = self.params['img_set_dir']
|
img_set_dir = self.params['img_set_dir']
|
||||||
img_name_list_path = self.params['label_file_path']
|
img_name_list_path = self.params['label_file_path']
|
||||||
with open(img_name_list_path, "rb") as fin:
|
with open(img_name_list_path, "rb") as fin:
|
||||||
|
@ -90,6 +83,9 @@ class EvalTestReader(object):
|
||||||
img_name = line.decode().strip("\n").split("\t")[0]
|
img_name = line.decode().strip("\n").split("\t")[0]
|
||||||
img_path = img_set_dir + "/" + img_name
|
img_path = img_set_dir + "/" + img_name
|
||||||
img_list.append([img_path, img_name])
|
img_list.append([img_path, img_name])
|
||||||
|
else:
|
||||||
|
img_path = self.params['single_img_path']
|
||||||
|
img_list = get_image_file_list(img_path)
|
||||||
|
|
||||||
def batch_iter_reader():
|
def batch_iter_reader():
|
||||||
batch_outs = []
|
batch_outs = []
|
||||||
|
|
|
@ -124,9 +124,6 @@ class DBProcessTest(object):
|
||||||
def resize_image_type0(self, im):
|
def resize_image_type0(self, im):
|
||||||
"""
|
"""
|
||||||
resize image to a size multiple of 32 which is required by the network
|
resize image to a size multiple of 32 which is required by the network
|
||||||
:param im: the resized image
|
|
||||||
:param max_side_len: limit of max image size to avoid out of memory in gpu
|
|
||||||
:return: the resized image and the resize ratio
|
|
||||||
"""
|
"""
|
||||||
max_side_len = self.max_side_len
|
max_side_len = self.max_side_len
|
||||||
h, w, _ = im.shape
|
h, w, _ = im.shape
|
||||||
|
|
|
@ -73,9 +73,3 @@ def reader_main(config=None, mode=None):
|
||||||
return paddle.reader.multiprocess_reader(readers, False)
|
return paddle.reader.multiprocess_reader(readers, False)
|
||||||
else:
|
else:
|
||||||
return function(mode)
|
return function(mode)
|
||||||
|
|
||||||
|
|
||||||
def test_reader(image_shape, img_path):
|
|
||||||
img = cv2.imread(img_path)
|
|
||||||
norm_img = process_image(img, image_shape)
|
|
||||||
return norm_img
|
|
||||||
|
|
|
@ -13,6 +13,7 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
def initial_logger():
|
def initial_logger():
|
||||||
|
@ -55,6 +56,23 @@ def get_check_reader_params(mode):
|
||||||
return check_params
|
return check_params
|
||||||
|
|
||||||
|
|
||||||
|
def get_image_file_list(img_file):
|
||||||
|
imgs_lists = []
|
||||||
|
if img_file is None or not os.path.exists(img_file):
|
||||||
|
raise Exception("not found any img file in {}".format(img_file))
|
||||||
|
|
||||||
|
img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
|
||||||
|
if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
|
||||||
|
imgs_lists.append(img_file)
|
||||||
|
elif os.path.isdir(img_file):
|
||||||
|
for single_file in os.listdir(img_file):
|
||||||
|
if single_file.split('.')[-1] in img_end:
|
||||||
|
imgs_lists.append(os.path.join(img_file, single_file))
|
||||||
|
if len(imgs_lists) == 0:
|
||||||
|
raise Exception("not found any img file in {}".format(img_file))
|
||||||
|
return imgs_lists
|
||||||
|
|
||||||
|
|
||||||
from paddle import fluid
|
from paddle import fluid
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,4 @@
|
||||||
|
shapely
|
||||||
|
imgaug
|
||||||
|
pyclipper
|
||||||
|
lmdb
|
|
@ -3,6 +3,10 @@
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from shapely.geometry import Polygon
|
from shapely.geometry import Polygon
|
||||||
|
"""
|
||||||
|
reference from :
|
||||||
|
https://github.com/MhLiao/DB/blob/3c32b808d4412680310d3d28eeb6a2d5bf1566c5/concern/icdar2015_eval/detection/iou.py#L8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
class DetectionIoUEvaluator(object):
|
class DetectionIoUEvaluator(object):
|
||||||
|
|
|
@ -98,6 +98,14 @@ def load_label_infor(label_file_path, do_ignore=False):
|
||||||
|
|
||||||
|
|
||||||
def cal_det_metrics(gt_label_path, save_res_path):
|
def cal_det_metrics(gt_label_path, save_res_path):
|
||||||
|
"""
|
||||||
|
calculate the detection metrics
|
||||||
|
Args:
|
||||||
|
gt_label_path(string): The groundtruth detection label file path
|
||||||
|
save_res_path(string): The saved predicted detection label path
|
||||||
|
return:
|
||||||
|
claculated metrics including Hmean、precision and recall
|
||||||
|
"""
|
||||||
evaluator = DetectionIoUEvaluator()
|
evaluator = DetectionIoUEvaluator()
|
||||||
gt_label_infor = load_label_infor(gt_label_path, do_ignore=True)
|
gt_label_infor = load_label_infor(gt_label_path, do_ignore=True)
|
||||||
dt_label_infor = load_label_infor(save_res_path)
|
dt_label_infor = load_label_infor(save_res_path)
|
||||||
|
|
|
@ -71,14 +71,19 @@ def main():
|
||||||
|
|
||||||
init_model(config, eval_program, exe)
|
init_model(config, eval_program, exe)
|
||||||
|
|
||||||
|
save_inference_dir = config['Global']['save_inference_dir']
|
||||||
|
if not os.path.exists(save_inference_dir):
|
||||||
|
os.makedirs(save_inference_dir)
|
||||||
fluid.io.save_inference_model(
|
fluid.io.save_inference_model(
|
||||||
dirname="./output/",
|
dirname=save_inference_dir,
|
||||||
feeded_var_names=feeded_var_names,
|
feeded_var_names=feeded_var_names,
|
||||||
main_program=eval_program,
|
main_program=eval_program,
|
||||||
target_vars=target_vars,
|
target_vars=target_vars,
|
||||||
executor=exe,
|
executor=exe,
|
||||||
model_filename='model',
|
model_filename='model',
|
||||||
params_filename='params')
|
params_filename='params')
|
||||||
|
print("inference model saved in {}/model and {}/params".format(
|
||||||
|
save_inference_dir, save_inference_dir))
|
||||||
print("save success, output_name_list:", fetches_var_name)
|
print("save success, output_name_list:", fetches_var_name)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -64,6 +64,9 @@ class TextSystem(object):
|
||||||
if dt_boxes is None:
|
if dt_boxes is None:
|
||||||
return None, None
|
return None, None
|
||||||
img_crop_list = []
|
img_crop_list = []
|
||||||
|
|
||||||
|
dt_boxes = sorted_boxes(dt_boxes)
|
||||||
|
|
||||||
for bno in range(len(dt_boxes)):
|
for bno in range(len(dt_boxes)):
|
||||||
tmp_box = copy.deepcopy(dt_boxes[bno])
|
tmp_box = copy.deepcopy(dt_boxes[bno])
|
||||||
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
||||||
|
@ -73,6 +76,27 @@ class TextSystem(object):
|
||||||
return dt_boxes, rec_res
|
return dt_boxes, rec_res
|
||||||
|
|
||||||
|
|
||||||
|
def sorted_boxes(dt_boxes):
|
||||||
|
"""
|
||||||
|
Sort text boxes in order from top to bottom, left to right
|
||||||
|
args:
|
||||||
|
dt_boxes(array):detected text boxes with shape [4, 2]
|
||||||
|
return:
|
||||||
|
sorted boxes(array) with shape [4, 2]
|
||||||
|
"""
|
||||||
|
num_boxes = dt_boxes.shape[0]
|
||||||
|
sorted_boxes = sorted(dt_boxes, key=lambda x: x[0][1])
|
||||||
|
_boxes = list(sorted_boxes)
|
||||||
|
|
||||||
|
for i in range(num_boxes - 1):
|
||||||
|
if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
|
||||||
|
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
|
||||||
|
tmp = _boxes[i]
|
||||||
|
_boxes[i] = _boxes[i + 1]
|
||||||
|
_boxes[i + 1] = tmp
|
||||||
|
return _boxes
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
args = utility.parse_args()
|
args = utility.parse_args()
|
||||||
image_file_list = utility.get_image_file_list(args.image_dir)
|
image_file_list = utility.get_image_file_list(args.image_dir)
|
||||||
|
|
|
@ -61,18 +61,6 @@ def parse_args():
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
def get_image_file_list(image_dir):
|
|
||||||
image_file_list = []
|
|
||||||
if image_dir is None:
|
|
||||||
return image_file_list
|
|
||||||
if os.path.isfile(image_dir):
|
|
||||||
image_file_list = [image_dir]
|
|
||||||
elif os.path.isdir(image_dir):
|
|
||||||
for single_file in os.listdir(image_dir):
|
|
||||||
image_file_list.append(os.path.join(image_dir, single_file))
|
|
||||||
return image_file_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_predictor(args, mode):
|
def create_predictor(args, mode):
|
||||||
if mode == "det":
|
if mode == "det":
|
||||||
model_dir = args.det_model_dir
|
model_dir = args.det_model_dir
|
||||||
|
@ -99,14 +87,7 @@ def create_predictor(args, mode):
|
||||||
config.disable_gpu()
|
config.disable_gpu()
|
||||||
|
|
||||||
config.disable_glog_info()
|
config.disable_glog_info()
|
||||||
config.switch_ir_optim(args.ir_optim)
|
|
||||||
# if args.use_tensorrt:
|
|
||||||
# config.enable_tensorrt_engine(
|
|
||||||
# precision_mode=AnalysisConfig.Precision.Half
|
|
||||||
# if args.use_fp16 else AnalysisConfig.Precision.Float32,
|
|
||||||
# max_batch_size=args.batch_size)
|
|
||||||
|
|
||||||
config.enable_memory_optim()
|
|
||||||
# use zero copy
|
# use zero copy
|
||||||
config.switch_use_feed_fetch_ops(False)
|
config.switch_use_feed_fetch_ops(False)
|
||||||
predictor = create_paddle_predictor(config)
|
predictor = create_paddle_predictor(config)
|
||||||
|
@ -127,21 +108,3 @@ def draw_text_det_res(dt_boxes, img_path):
|
||||||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||||
img_name_pure = img_path.split("/")[-1]
|
img_name_pure = img_path.split("/")[-1]
|
||||||
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
args = parse_args()
|
|
||||||
args.use_gpu = False
|
|
||||||
root_path = "/Users/liuweiwei06/Desktop/TEST_CODES/icode/baidu/personal-code/PaddleOCR/"
|
|
||||||
args.det_model_dir = root_path + "test_models/public_v1/ch_det_mv3_db"
|
|
||||||
|
|
||||||
predictor, input_tensor, output_tensors = create_predictor(args, mode='det')
|
|
||||||
print(predictor.get_input_names())
|
|
||||||
print(predictor.get_output_names())
|
|
||||||
print(predictor.program(), file=open("det_program.txt", 'w'))
|
|
||||||
|
|
||||||
args.rec_model_dir = root_path + "test_models/public_v1/ch_rec_mv3_crnn/"
|
|
||||||
rec_predictor, input_tensor, output_tensors = create_predictor(
|
|
||||||
args, mode='rec')
|
|
||||||
print(rec_predictor.get_input_names())
|
|
||||||
print(rec_predictor.get_output_names())
|
|
||||||
|
|
|
@ -0,0 +1,150 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from copy import deepcopy
|
||||||
|
import json
|
||||||
|
|
||||||
|
# from paddle.fluid.contrib.model_stat import summary
|
||||||
|
|
||||||
|
|
||||||
|
def set_paddle_flags(**kwargs):
|
||||||
|
for key, value in kwargs.items():
|
||||||
|
if os.environ.get(key, None) is None:
|
||||||
|
os.environ[key] = str(value)
|
||||||
|
|
||||||
|
|
||||||
|
# NOTE(paddle-dev): All of these flags should be
|
||||||
|
# set before `import paddle`. Otherwise, it would
|
||||||
|
# not take any effect.
|
||||||
|
set_paddle_flags(
|
||||||
|
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
|
||||||
|
)
|
||||||
|
|
||||||
|
from paddle import fluid
|
||||||
|
from ppocr.utils.utility import create_module
|
||||||
|
import program
|
||||||
|
from ppocr.utils.save_load import init_model
|
||||||
|
from ppocr.data.reader_main import reader_main
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
from ppocr.utils.utility import initial_logger
|
||||||
|
logger = initial_logger()
|
||||||
|
|
||||||
|
|
||||||
|
def draw_det_res(dt_boxes, config, img_name, ino):
|
||||||
|
if len(dt_boxes) > 0:
|
||||||
|
img_set_path = config['TestReader']['img_set_dir']
|
||||||
|
img_path = img_set_path + img_name
|
||||||
|
import cv2
|
||||||
|
src_im = cv2.imread(img_path)
|
||||||
|
for box in dt_boxes:
|
||||||
|
box = box.astype(np.int32).reshape((-1, 1, 2))
|
||||||
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||||
|
save_det_path = os.path.basename(config['Global'][
|
||||||
|
'save_res_path']) + "/det_results/"
|
||||||
|
if not os.path.exists(save_det_path):
|
||||||
|
os.makedirs(save_det_path)
|
||||||
|
save_path = os.path.join(save_det_path, "det_{}.jpg".format(img_name))
|
||||||
|
cv2.imwrite(save_path, src_im)
|
||||||
|
logger.info("The detected Image saved in {}".format(save_path))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
config = program.load_config(FLAGS.config)
|
||||||
|
program.merge_config(FLAGS.opt)
|
||||||
|
print(config)
|
||||||
|
|
||||||
|
# check if set use_gpu=True in paddlepaddle cpu version
|
||||||
|
use_gpu = config['Global']['use_gpu']
|
||||||
|
program.check_gpu(use_gpu)
|
||||||
|
|
||||||
|
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
|
||||||
|
det_model = create_module(config['Architecture']['function'])(params=config)
|
||||||
|
|
||||||
|
startup_prog = fluid.Program()
|
||||||
|
eval_prog = fluid.Program()
|
||||||
|
with fluid.program_guard(eval_prog, startup_prog):
|
||||||
|
with fluid.unique_name.guard():
|
||||||
|
_, eval_outputs = det_model(mode="test")
|
||||||
|
fetch_name_list = list(eval_outputs.keys())
|
||||||
|
eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]
|
||||||
|
|
||||||
|
eval_prog = eval_prog.clone(for_test=True)
|
||||||
|
exe.run(startup_prog)
|
||||||
|
|
||||||
|
# load checkpoints
|
||||||
|
checkpoints = config['Global'].get('checkpoints')
|
||||||
|
if checkpoints:
|
||||||
|
path = checkpoints
|
||||||
|
fluid.load(eval_prog, path, exe)
|
||||||
|
logger.info("Finish initing model from {}".format(path))
|
||||||
|
else:
|
||||||
|
raise Exception("{} not exists!".format(checkpoints))
|
||||||
|
|
||||||
|
save_res_path = config['Global']['save_res_path']
|
||||||
|
with open(save_res_path, "wb") as fout:
|
||||||
|
test_reader = reader_main(config=config, mode='test')
|
||||||
|
tackling_num = 0
|
||||||
|
for data in test_reader():
|
||||||
|
img_num = len(data)
|
||||||
|
tackling_num = tackling_num + img_num
|
||||||
|
logger.info("tackling_num:%d", tackling_num)
|
||||||
|
img_list = []
|
||||||
|
ratio_list = []
|
||||||
|
img_name_list = []
|
||||||
|
for ino in range(img_num):
|
||||||
|
img_list.append(data[ino][0])
|
||||||
|
ratio_list.append(data[ino][1])
|
||||||
|
img_name_list.append(data[ino][2])
|
||||||
|
|
||||||
|
img_list = np.concatenate(img_list, axis=0)
|
||||||
|
outs = exe.run(eval_prog,\
|
||||||
|
feed={'image': img_list},\
|
||||||
|
fetch_list=eval_fetch_list)
|
||||||
|
|
||||||
|
global_params = config['Global']
|
||||||
|
postprocess_params = deepcopy(config["PostProcess"])
|
||||||
|
postprocess_params.update(global_params)
|
||||||
|
postprocess = create_module(postprocess_params['function'])\
|
||||||
|
(params=postprocess_params)
|
||||||
|
dt_boxes_list = postprocess({"maps": outs[0]}, ratio_list)
|
||||||
|
for ino in range(img_num):
|
||||||
|
dt_boxes = dt_boxes_list[ino]
|
||||||
|
img_name = img_name_list[ino]
|
||||||
|
dt_boxes_json = []
|
||||||
|
for box in dt_boxes:
|
||||||
|
tmp_json = {"transcription": ""}
|
||||||
|
tmp_json['points'] = box.tolist()
|
||||||
|
dt_boxes_json.append(tmp_json)
|
||||||
|
otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
|
||||||
|
fout.write(otstr.encode())
|
||||||
|
draw_det_res(dt_boxes, config, img_name, ino)
|
||||||
|
|
||||||
|
logger.info("success!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = program.ArgsParser()
|
||||||
|
FLAGS = parser.parse_args()
|
||||||
|
main()
|
|
@ -185,22 +185,6 @@ def build(config, main_prog, startup_prog, mode):
|
||||||
|
|
||||||
def build_export(config, main_prog, startup_prog):
|
def build_export(config, main_prog, startup_prog):
|
||||||
"""
|
"""
|
||||||
Build a program using a model and an optimizer
|
|
||||||
1. create feeds
|
|
||||||
2. create a dataloader
|
|
||||||
3. create a model
|
|
||||||
4. create fetchs
|
|
||||||
5. create an optimizer
|
|
||||||
|
|
||||||
Args:
|
|
||||||
config(dict): config
|
|
||||||
main_prog(): main program
|
|
||||||
startup_prog(): startup program
|
|
||||||
is_train(bool): train or valid
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dataloader(): a bridge between the model and the data
|
|
||||||
fetchs(dict): dict of model outputs(included loss and measures)
|
|
||||||
"""
|
"""
|
||||||
with fluid.program_guard(main_prog, startup_prog):
|
with fluid.program_guard(main_prog, startup_prog):
|
||||||
with fluid.unique_name.guard():
|
with fluid.unique_name.guard():
|
||||||
|
|
Loading…
Reference in New Issue