add support for quant distillation
This commit is contained in:
parent
7608f16397
commit
ee3df4c28e
|
@ -37,6 +37,17 @@ from paddleslim.dygraph.quant import QAT
|
|||
from ppocr.data import build_dataloader
|
||||
|
||||
|
||||
def export_single_model(quanter, model, infer_shape, save_path, logger):
|
||||
quanter.save_quantized_model(
|
||||
model,
|
||||
save_path,
|
||||
input_spec=[
|
||||
paddle.static.InputSpec(
|
||||
shape=[None] + infer_shape, dtype='float32')
|
||||
])
|
||||
logger.info('inference QAT model is saved to {}'.format(save_path))
|
||||
|
||||
|
||||
def main():
|
||||
############################################################################################################
|
||||
# 1. quantization configs
|
||||
|
@ -76,7 +87,14 @@ def main():
|
|||
# for rec algorithm
|
||||
if hasattr(post_process_class, 'character'):
|
||||
char_num = len(getattr(post_process_class, 'character'))
|
||||
config['Architecture']["Head"]['out_channels'] = char_num
|
||||
if config['Architecture']["algorithm"] in ["Distillation",
|
||||
]: # distillation model
|
||||
for key in config['Architecture']["Models"]:
|
||||
config['Architecture']["Models"][key]["Head"][
|
||||
'out_channels'] = char_num
|
||||
else: # base rec model
|
||||
config['Architecture']["Head"]['out_channels'] = char_num
|
||||
|
||||
model = build_model(config['Architecture'])
|
||||
|
||||
# get QAT model
|
||||
|
@ -93,24 +111,27 @@ def main():
|
|||
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
||||
|
||||
# start eval
|
||||
metirc = program.eval(model, valid_dataloader, post_process_class,
|
||||
eval_class)
|
||||
model_type = config['Architecture']['model_type']
|
||||
metric = program.eval(model, valid_dataloader, post_process_class,
|
||||
eval_class, model_type)
|
||||
logger.info('metric eval ***************')
|
||||
for k, v in metirc.items():
|
||||
for k, v in metric.items():
|
||||
logger.info('{}:{}'.format(k, v))
|
||||
|
||||
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
|
||||
infer_shape = [3, 32, 100] if config['Architecture'][
|
||||
'model_type'] != "det" else [3, 640, 640]
|
||||
|
||||
quanter.save_quantized_model(
|
||||
model,
|
||||
save_path,
|
||||
input_spec=[
|
||||
paddle.static.InputSpec(
|
||||
shape=[None] + infer_shape, dtype='float32')
|
||||
])
|
||||
logger.info('inference QAT model is saved to {}'.format(save_path))
|
||||
save_path = config["Global"]["save_inference_dir"]
|
||||
|
||||
arch_config = config["Architecture"]
|
||||
if arch_config["algorithm"] in ["Distillation", ]: # distillation model
|
||||
for idx, name in enumerate(model.model_name_list):
|
||||
sub_model_save_path = os.path.join(save_path, name, "inference")
|
||||
export_single_model(quanter, model.model_list[idx], infer_shape,
|
||||
sub_model_save_path, logger)
|
||||
else:
|
||||
save_path = os.path.join(save_path, "inference")
|
||||
export_single_model(quanter, model, infer_shape, save_path, logger)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -109,9 +109,18 @@ def main(config, device, logger, vdl_writer):
|
|||
# for rec algorithm
|
||||
if hasattr(post_process_class, 'character'):
|
||||
char_num = len(getattr(post_process_class, 'character'))
|
||||
config['Architecture']["Head"]['out_channels'] = char_num
|
||||
if config['Architecture']["algorithm"] in ["Distillation",
|
||||
]: # distillation model
|
||||
for key in config['Architecture']["Models"]:
|
||||
config['Architecture']["Models"][key]["Head"][
|
||||
'out_channels'] = char_num
|
||||
else: # base rec model
|
||||
config['Architecture']["Head"]['out_channels'] = char_num
|
||||
model = build_model(config['Architecture'])
|
||||
|
||||
quanter = QAT(config=quant_config, act_preprocess=PACT)
|
||||
quanter.quantize(model)
|
||||
|
||||
if config['Global']['distributed']:
|
||||
model = paddle.DataParallel(model)
|
||||
|
||||
|
@ -132,8 +141,6 @@ def main(config, device, logger, vdl_writer):
|
|||
|
||||
logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
|
||||
format(len(train_dataloader), len(valid_dataloader)))
|
||||
quanter = QAT(config=quant_config, act_preprocess=PACT)
|
||||
quanter.quantize(model)
|
||||
|
||||
# start train
|
||||
program.train(config, train_dataloader, valid_dataloader, device, model,
|
||||
|
|
Loading…
Reference in New Issue