fix inference doc
This commit is contained in:
parent
706cfe8391
commit
f57e23a902
|
@ -3,7 +3,7 @@
|
|||
|
||||
inference 模型(`fluid.io.save_inference_model`保存的模型)
|
||||
一般是模型训练完成后保存的固化模型,多用于预测部署。训练过程中保存的模型是checkpoints模型,保存的是模型的参数,多用于恢复训练等。
|
||||
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合与实际系统集成。更详细的介绍请参考文档[分类预测框架](https://paddleclas.readthedocs.io/zh_CN/latest/extension/paddle_inference.html).
|
||||
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合与实际系统集成。更详细的介绍请参考文档[分类预测框架](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
|
||||
|
||||
接下来首先介绍如何将训练的模型转换成inference模型,然后将依次介绍文本检测、文本识别以及两者串联基于预测引擎推理。
|
||||
|
||||
|
@ -41,7 +41,7 @@ inference 模型(`fluid.io.save_inference_model`保存的模型)
|
|||
|
||||
下载超轻量级中文检测模型:
|
||||
```
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar && tar xf ./ch_lite/ch_det_mv3_db.tar -C ./ch_lite/
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_det_train.tar -C ./ch_lite/
|
||||
```
|
||||
上述模型是以MobileNetV3为backbone训练的DB算法,将训练好的模型转换成inference模型只需要运行如下命令:
|
||||
```
|
||||
|
@ -50,7 +50,7 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar &
|
|||
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/det_mv3_db/best_accuracy Global.save_inference_dir=./inference/det_db/
|
||||
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
|
||||
```
|
||||
转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的`Global.checkpoints`、`Global.save_inference_dir`参数。
|
||||
其中`Global.checkpoints`指向训练中保存的模型参数文件,`Global.save_inference_dir`是生成的inference模型要保存的目录。
|
||||
|
@ -66,7 +66,7 @@ inference/det_db/
|
|||
|
||||
下载超轻量中文识别模型:
|
||||
```
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar && tar xf ./ch_lite/ch_rec_mv3_crnn.tar -C ./ch_lite/
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar && tar xf ch_ppocr_mobile_v1.1_rec_train.tar -C ./ch_lite/
|
||||
```
|
||||
|
||||
识别模型转inference模型与检测的方式相同,如下:
|
||||
|
@ -76,7 +76,7 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar
|
|||
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints=./ch_lite/rec_mv3_crnn/best_accuracy \
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_rec_train/best_accuracy \
|
||||
Global.save_inference_dir=./inference/rec_crnn/
|
||||
```
|
||||
|
||||
|
@ -351,9 +351,17 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999963]
|
|||
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir`和`rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。可视化识别结果默认保存到 ./inference_results 文件夹里面。
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls true
|
||||
# 使用方向分类器
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||
|
||||
# 不使用方向分类器
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
执行命令后,识别结果图像如下:
|
||||
|
||||
![](../imgs_results/2.jpg)
|
||||
|
|
|
@ -5,7 +5,7 @@ The inference model (the model saved by `fluid.io.save_inference_model`) is gene
|
|||
|
||||
The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
|
||||
|
||||
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://paddleclas.readthedocs.io/zh_CN/latest/extension/paddle_inference.html).
|
||||
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
|
||||
|
||||
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, and the concatenation of them based on inference model.
|
||||
|
||||
|
@ -42,8 +42,9 @@ Next, we first introduce how to convert a trained model into an inference model,
|
|||
|
||||
Download the lightweight Chinese detection model:
|
||||
```
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar && tar xf ./ch_lite/ch_det_mv3_db.tar -C ./ch_lite/
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_det_train.tar -C ./ch_lite/
|
||||
```
|
||||
|
||||
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
|
||||
```
|
||||
# -c Set the training algorithm yml configuration file
|
||||
|
@ -51,9 +52,9 @@ The above model is a DB algorithm trained with MobileNetV3 as the backbone. To c
|
|||
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||
|
||||
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/det_mv3_db/best_accuracy \
|
||||
Global.save_inference_dir=./inference/det_db/
|
||||
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
|
||||
```
|
||||
|
||||
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` and `Global.save_inference_dir` parameters in the configuration file.
|
||||
`Global.checkpoints` points to the model parameter file saved during training, and `Global.save_inference_dir` is the directory where the generated inference model is saved.
|
||||
After the conversion is successful, there are two files in the `save_inference_dir` directory:
|
||||
|
@ -68,7 +69,7 @@ inference/det_db/
|
|||
|
||||
Download the lightweight Chinese recognition model:
|
||||
```
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar && tar xf ./ch_lite/ch_rec_mv3_crnn.tar -C ./ch_lite/
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar && tar xf ch_ppocr_mobile_v1.1_rec_train.tar -C ./ch_lite/
|
||||
```
|
||||
|
||||
The recognition model is converted to the inference model in the same way as the detection, as follows:
|
||||
|
@ -78,8 +79,7 @@ The recognition model is converted to the inference model in the same way as the
|
|||
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||
|
||||
python3 tools/export_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints=./ch_lite/rec_mv3_crnn/best_accuracy \
|
||||
Global.save_inference_dir=./inference/rec_crnn/
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_rec_train/best_accuracy \
|
||||
```
|
||||
|
||||
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
|
||||
|
@ -321,9 +321,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
|
|||
After executing the command, the prediction result of the above figure is:
|
||||
|
||||
``` text
|
||||
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
|
||||
2020-09-19 16:15:05,077-INFO: word : 바탕으로
|
||||
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
|
||||
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
|
||||
2020-09-19 16:15:05,077-INFO: word : 바탕으로
|
||||
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
|
||||
```
|
||||
|
||||
<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
|
||||
|
@ -357,7 +357,11 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999963]
|
|||
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls true
|
||||
# use direction classifier
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||
|
||||
# not use use direction classifier
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
|
||||
```
|
||||
|
||||
After executing the command, the recognition result image is as follows:
|
||||
|
|
Loading…
Reference in New Issue