commit
f94ebce2f5
|
@ -7,6 +7,7 @@ PaddleOCR aims to create rich, leading, and practical OCR tools that help users
|
|||
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
|
||||
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipline](#PP-OCR-Pipline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
|
||||
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
|
||||
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
|
||||
- 2020.8.24 Support the use of PaddleOCR through whl package installation,pelease refer [PaddleOCR Package](./doc/doc_en/whl_en.md)
|
||||
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
|
||||
- [more](./doc/doc_en/update_en.md)
|
||||
|
|
|
@ -7,6 +7,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
|
|||
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
|
||||
- 2020.9.19 更新超轻量压缩ppocr_mobile_slim系列模型,整体模型3.5M(详见[PP-OCR Pipline](#PP-OCR)),适合在移动端部署使用。[模型下载](#模型下载)
|
||||
- 2020.9.17 更新超轻量ppocr_mobile系列和通用ppocr_server系列中英文ocr模型,媲美商业效果。[模型下载](#模型下载)
|
||||
- 2020.9.17 更新[英文识别模型](./doc/doc_ch/models_list.md#english-recognition-model)和[多语言识别模型](doc/doc_ch/models_list.md#english-recognition-model),已支持`德语、法语、日语、韩语`,更多语种识别模型将持续更新。
|
||||
- 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考[FAQ](./doc/doc_ch/FAQ.md)
|
||||
- 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./doc/doc_ch/whl.md)
|
||||
- 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,[获取地址](https://aistudio.baidu.com/aistudio/education/group/info/1519)
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
# 更新
|
||||
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
|
||||
- 2020.9.19 更新超轻量压缩ppocr_mobile_slim系列模型,整体模型3.5M(详见[PP-OCR Pipline](#PP-OCR)),适合在移动端部署使用。[模型下载](#模型下载)
|
||||
- 2020.9.17 更新超轻量ppocr_mobile系列和通用ppocr_server系列中英文ocr模型,媲美商业效果。[模型下载](#模型下载)
|
||||
- 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考[FAQ](./doc/doc_ch/FAQ.md)
|
||||
- 2020.9.19 更新超轻量压缩ppocr_mobile_slim系列模型,整体模型3.5M(详见[PP-OCR Pipline](../../README_ch.md#PP-OCR)),适合在移动端部署使用。[模型下载](../../README_ch.md#模型下载)
|
||||
- 2020.9.17 更新超轻量ppocr_mobile系列和通用ppocr_server系列中英文ocr模型,媲美商业效果。[模型下载](../../README_ch.md#模型下载)
|
||||
- 2020.9.17 更新[英文识别模型](./models_list.md#english-recognition-model)和[多语种识别模型](./models_list.md#english-recognition-model),已支持`德语、法语、日语、韩语`,更多语种识别模型将持续更新。
|
||||
- 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考[FAQ](./FAQ.md)
|
||||
- 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/whl.md)
|
||||
- 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,[获取地址](https://aistudio.baidu.com/aistudio/education/group/info/1519)
|
||||
- 2020.8.16 开源文本检测算法[SAST](https://arxiv.org/abs/1908.05498)和文本识别算法[SRN](https://arxiv.org/abs/2003.12294)
|
||||
|
@ -11,8 +12,8 @@
|
|||
- 2020.7.15 完善预测部署,添加基于C++预测引擎推理、服务化部署和端侧部署方案,以及超轻量级中文OCR模型预测耗时Benchmark
|
||||
- 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具
|
||||
- 2020.7.9 添加支持空格的识别模型,识别效果,预测及训练方式请参考快速开始和文本识别训练相关文档
|
||||
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
|
||||
- 2020.6.8 添加[数据集](./doc/doc_ch/datasets.md),并保持持续更新
|
||||
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./config.md)
|
||||
- 2020.6.8 添加[数据集](./datasets.md),并保持持续更新
|
||||
- 2020.6.5 支持 `attetnion` 模型导出 `inference_model`
|
||||
- 2020.6.5 支持单独预测识别时,输出结果得分
|
||||
- 2020.5.30 提供超轻量级中文OCR在线体验
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
# RECENT UPDATES
|
||||
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
|
||||
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipline](../../README.md#PP-OCR-Pipline)), suitable for mobile deployment. [Model Downloads](../../README.md#Supported-Chinese-model-list)
|
||||
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](../../README.md#Supported-Chinese-model-list)
|
||||
- 2020.9.17 update [English recognition model](./models_list_en.md#english-recognition-model) and [Multilingual recognition model](./models_list_en.md#english-recognition-model), `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
|
||||
- 2020.8.24 Support the use of PaddleOCR through whl package installation,pelease refer [PaddleOCR Package](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/whl_en.md)
|
||||
- 2020.8.16 Release text detection algorithm [SAST](https://arxiv.org/abs/1908.05498) and text recognition algorithm [SRN](https://arxiv.org/abs/2003.12294)
|
||||
- 2020.7.23, Release the playback and PPT of live class on BiliBili station, PaddleOCR Introduction, [address](https://aistudio.baidu.com/aistudio/course/introduce/1519)
|
||||
|
@ -8,7 +11,7 @@
|
|||
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
|
||||
- 2020.7.9 Add a new model to support recognize the character "space".
|
||||
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
|
||||
- 2020.6.8 Add [datasets](./doc/doc_en/datasets_en.md) and keep updating
|
||||
- 2020.6.8 Add [datasets](./datasets_en.md) and keep updating
|
||||
- 2020.6.5 Support exporting `attention` model to `inference_model`
|
||||
- 2020.6.5 Support separate prediction and recognition, output result score
|
||||
- 2020.6.5 Support exporting `attention` model to `inference_model`
|
||||
|
|
Loading…
Reference in New Issue