Merge branch 'develop' into develop

This commit is contained in:
MissPenguin 2020-08-16 10:21:59 +08:00 committed by GitHub
commit fee2c17bf7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
67 changed files with 1631 additions and 285 deletions

View File

@ -3,10 +3,8 @@ English | [简体中文](README_cn.md)
## Introduction
PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice.
**Live stream on coming day**: July 21, 2020 at 8 pm BiliBili station live stream
**Recent updates**
- 2020.7.23, Release the playback and PPT of live class on BiliBili station, PaddleOCR Introduction, [address](https://aistudio.baidu.com/aistudio/course/introduce/1519)
- 2020.7.15, Add mobile App demo , support both iOS and Android ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the deployment ability, add the C + + inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
@ -214,3 +212,4 @@ We welcome all the contributions to PaddleOCR and appreciate for your feedback v
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.

View File

@ -3,9 +3,8 @@
## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。
**直播预告2020年7月21日晚8点B站直播PaddleOCR开源大礼包全面解读直播地址当天更新**
**近期更新**
- 2020.7.23 发布7月21日B站直播课回放和PPTPaddleOCR开源大礼包全面解读[获取地址](https://aistudio.baidu.com/aistudio/course/introduce/1519)
- 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO支持iOS和Android系统
- 2020.7.15 完善预测部署添加基于C++预测引擎推理、服务化部署和端侧部署方案以及超轻量级中文OCR模型预测耗时Benchmark
- 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具
@ -206,8 +205,9 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训
## 贡献代码
我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议并简化了PaddleOCR的部分代码风格。

View File

@ -3,11 +3,11 @@ import java.security.MessageDigest
apply plugin: 'com.android.application'
android {
compileSdkVersion 28
compileSdkVersion 29
defaultConfig {
applicationId "com.baidu.paddle.lite.demo.ocr"
minSdkVersion 15
targetSdkVersion 28
minSdkVersion 23
targetSdkVersion 29
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
@ -39,9 +39,8 @@ android {
dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support.constraint:constraint-layout:1.1.3'
implementation 'com.android.support:design:28.0.0'
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'

View File

@ -14,10 +14,10 @@
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<!-- to test MiniActivity, change this to com.baidu.paddle.lite.demo.ocr.MiniActivity -->
<activity android:name="com.baidu.paddle.lite.demo.ocr.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
@ -25,6 +25,15 @@
android:name="com.baidu.paddle.lite.demo.ocr.SettingsActivity"
android:label="Settings">
</activity>
<provider
android:name="androidx.core.content.FileProvider"
android:authorities="com.baidu.paddle.lite.demo.ocr.fileprovider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/file_paths"></meta-data>
</provider>
</application>
</manifest>

View File

@ -30,7 +30,7 @@ Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_init(JNIEnv *env, jobject
}
/**
* "LITE_POWER_HIGH" paddle::lite_api::LITE_POWER_HIGH
* "LITE_POWER_HIGH" convert to paddle::lite_api::LITE_POWER_HIGH
* @param cpu_mode
* @return
*/

View File

@ -37,7 +37,7 @@ int OCR_PPredictor::init_from_file(const std::string &det_model_path, const std:
return RETURN_OK;
}
/**
*
* for debug use, show result of First Step
* @param filter_boxes
* @param boxes
* @param srcimg

View File

@ -12,26 +12,26 @@
namespace ppredictor {
/**
*
* Config
*/
struct OCR_Config {
int thread_num = 4; // 线程数
int thread_num = 4; // Thread num
paddle::lite_api::PowerMode mode = paddle::lite_api::LITE_POWER_HIGH; // PaddleLite Mode
};
/**
* ,
* PolyGone Result
*/
struct OCRPredictResult {
std::vector<int> word_index; //
std::vector<int> word_index;
std::vector<std::vector<int>> points;
float score;
};
/**
* OCR 2
* 1. 使det
* 2. 使rec
* OCR there are 2 models
* 1. First modeldetselect polygones to show where are the texts
* 2. crop from the origin images, use these polygones to infer
*/
class OCR_PPredictor : public PPredictor_Interface {
public:
@ -50,7 +50,7 @@ public:
int init(const std::string &det_model_content, const std::string &rec_model_content);
int init_from_file(const std::string &det_model_path, const std::string &rec_model_path);
/**
* OCR结果
* Return OCR result
* @param dims
* @param input_data
* @param input_len
@ -69,7 +69,7 @@ public:
private:
/**
*
* calcul Polygone from the result image of first model
* @param pred
* @param output_height
* @param output_width
@ -81,7 +81,7 @@ private:
const cv::Mat &origin);
/**
*
* infer for second model
*
* @param boxes
* @param origin
@ -91,14 +91,14 @@ private:
infer_rec(const std::vector<std::vector<std::vector<int>>> &boxes, const cv::Mat &origin);
/**
*
* Postprocess or sencod model to extract text
* @param res
* @return
*/
std::vector<int> postprocess_rec_word_index(const PredictorOutput &res);
/**
*
* calculate confidence of second model text result
* @param res
* @return
*/

View File

@ -7,7 +7,7 @@
namespace ppredictor {
/**
* PaddleLite Preditor
* PaddleLite Preditor Common Interface
*/
class PPredictor_Interface {
public:
@ -21,7 +21,7 @@ public:
};
/**
*
* Common Predictor
*/
class PPredictor : public PPredictor_Interface {
public:
@ -33,9 +33,9 @@ public:
}
/**
* paddlitelite的opt模型nb格式init_paddle二选一
* init paddlitelite opt modelnb format or use ini_paddle
* @param model_content
* @return 0 0
* @return 0
*/
virtual int init_nb(const std::string &model_content);

View File

@ -21,10 +21,10 @@ public:
const std::vector<std::vector<uint64_t>> get_lod() const;
const std::vector<int64_t> get_shape() const;
std::vector<float> data; // 通常是float返回与下面的data_int二选一
std::vector<int> data_int; // 少数层是int返回与 data二选一
std::vector<int64_t> shape; // PaddleLite输出层的shape
std::vector<std::vector<uint64_t>> lod; // PaddleLite输出层的lod
std::vector<float> data; // return float, or use data_int
std::vector<int> data_int; // several layers return int or use data
std::vector<int64_t> shape; // PaddleLite output shape
std::vector<std::vector<uint64_t>> lod; // PaddleLite output lod
private:
std::unique_ptr<const paddle::lite_api::Tensor> _tensor;

View File

@ -19,15 +19,16 @@ package com.baidu.paddle.lite.demo.ocr;
import android.content.res.Configuration;
import android.os.Bundle;
import android.preference.PreferenceActivity;
import android.support.annotation.LayoutRes;
import android.support.annotation.Nullable;
import android.support.v7.app.ActionBar;
import android.support.v7.app.AppCompatDelegate;
import android.support.v7.widget.Toolbar;
import android.view.MenuInflater;
import android.view.View;
import android.view.ViewGroup;
import androidx.annotation.LayoutRes;
import androidx.annotation.Nullable;
import androidx.appcompat.app.ActionBar;
import androidx.appcompat.app.AppCompatDelegate;
import androidx.appcompat.widget.Toolbar;
/**
* A {@link PreferenceActivity} which implements and proxies the necessary calls
* to be used with AppCompat.

View File

@ -3,23 +3,22 @@ package com.baidu.paddle.lite.demo.ocr;
import android.Manifest;
import android.app.ProgressDialog;
import android.content.ContentResolver;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.pm.PackageManager;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.media.ExifInterface;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.preference.PreferenceManager;
import android.provider.MediaStore;
import android.support.annotation.NonNull;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v7.app.AppCompatActivity;
import android.text.method.ScrollingMovementMethod;
import android.util.Log;
import android.view.Menu;
@ -29,9 +28,17 @@ import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import androidx.core.content.FileProvider;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.text.SimpleDateFormat;
import java.util.Date;
public class MainActivity extends AppCompatActivity {
private static final String TAG = MainActivity.class.getSimpleName();
@ -69,6 +76,7 @@ public class MainActivity extends AppCompatActivity {
protected float[] inputMean = new float[]{};
protected float[] inputStd = new float[]{};
protected float scoreThreshold = 0.1f;
private String currentPhotoPath;
protected Predictor predictor = new Predictor();
@ -368,18 +376,56 @@ public class MainActivity extends AppCompatActivity {
}
private void takePhoto() {
Intent takePhotoIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
if (takePhotoIntent.resolveActivity(getPackageManager()) != null) {
startActivityForResult(takePhotoIntent, TAKE_PHOTO_REQUEST_CODE);
Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
// Ensure that there's a camera activity to handle the intent
if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
// Create the File where the photo should go
File photoFile = null;
try {
photoFile = createImageFile();
} catch (IOException ex) {
Log.e("MainActitity", ex.getMessage(), ex);
Toast.makeText(MainActivity.this,
"Create Camera temp file failed: " + ex.getMessage(), Toast.LENGTH_SHORT).show();
}
// Continue only if the File was successfully created
if (photoFile != null) {
Log.i(TAG, "FILEPATH " + getExternalFilesDir("Pictures").getAbsolutePath());
Uri photoURI = FileProvider.getUriForFile(this,
"com.baidu.paddle.lite.demo.ocr.fileprovider",
photoFile);
currentPhotoPath = photoFile.getAbsolutePath();
takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT, photoURI);
startActivityForResult(takePictureIntent, TAKE_PHOTO_REQUEST_CODE);
Log.i(TAG, "startActivityForResult finished");
}
}
}
private File createImageFile() throws IOException {
// Create an image file name
String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());
String imageFileName = "JPEG_" + timeStamp + "_";
File storageDir = getExternalFilesDir(Environment.DIRECTORY_PICTURES);
File image = File.createTempFile(
imageFileName, /* prefix */
".bmp", /* suffix */
storageDir /* directory */
);
return image;
}
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if (resultCode == RESULT_OK && data != null) {
if (resultCode == RESULT_OK) {
switch (requestCode) {
case OPEN_GALLERY_REQUEST_CODE:
if (data == null) {
break;
}
try {
ContentResolver resolver = getContentResolver();
Uri uri = data.getData();
@ -393,9 +439,22 @@ public class MainActivity extends AppCompatActivity {
}
break;
case TAKE_PHOTO_REQUEST_CODE:
Bundle extras = data.getExtras();
Bitmap image = (Bitmap) extras.get("data");
if (currentPhotoPath != null) {
ExifInterface exif = null;
try {
exif = new ExifInterface(currentPhotoPath);
} catch (IOException e) {
e.printStackTrace();
}
int orientation = exif.getAttributeInt(ExifInterface.TAG_ORIENTATION,
ExifInterface.ORIENTATION_UNDEFINED);
Log.i(TAG, "rotation " + orientation);
Bitmap image = BitmapFactory.decodeFile(currentPhotoPath);
image = Utils.rotateBitmap(image, orientation);
onImageChanged(image);
} else {
Log.e(TAG, "currentPhotoPath is null");
}
break;
default:
break;

View File

@ -0,0 +1,157 @@
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.io.IOException;
import java.io.InputStream;
public class MiniActivity extends AppCompatActivity {
public static final int REQUEST_LOAD_MODEL = 0;
public static final int REQUEST_RUN_MODEL = 1;
public static final int REQUEST_UNLOAD_MODEL = 2;
public static final int RESPONSE_LOAD_MODEL_SUCCESSED = 0;
public static final int RESPONSE_LOAD_MODEL_FAILED = 1;
public static final int RESPONSE_RUN_MODEL_SUCCESSED = 2;
public static final int RESPONSE_RUN_MODEL_FAILED = 3;
private static final String TAG = "MiniActivity";
protected Handler receiver = null; // Receive messages from worker thread
protected Handler sender = null; // Send command to worker thread
protected HandlerThread worker = null; // Worker thread to load&run model
protected volatile Predictor predictor = null;
private String assetModelDirPath = "models/ocr_v1_for_cpu";
private String assetlabelFilePath = "labels/ppocr_keys_v1.txt";
private Button button;
private ImageView imageView; // image result
private TextView textView; // text result
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_mini);
Log.i(TAG, "SHOW in Logcat");
// Prepare the worker thread for mode loading and inference
worker = new HandlerThread("Predictor Worker");
worker.start();
sender = new Handler(worker.getLooper()) {
public void handleMessage(Message msg) {
switch (msg.what) {
case REQUEST_LOAD_MODEL:
// Load model and reload test image
if (!onLoadModel()) {
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(MiniActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
}
});
}
break;
case REQUEST_RUN_MODEL:
// Run model if model is loaded
final boolean isSuccessed = onRunModel();
runOnUiThread(new Runnable() {
@Override
public void run() {
if (isSuccessed){
onRunModelSuccessed();
}else{
Toast.makeText(MiniActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
}
}
});
break;
}
}
};
sender.sendEmptyMessage(REQUEST_LOAD_MODEL); // corresponding to REQUEST_LOAD_MODEL to call onLoadModel()
imageView = findViewById(R.id.imageView);
textView = findViewById(R.id.sample_text);
button = findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
sender.sendEmptyMessage(REQUEST_RUN_MODEL);
}
});
}
@Override
protected void onDestroy() {
onUnloadModel();
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
worker.quitSafely();
} else {
worker.quit();
}
super.onDestroy();
}
/**
* call in onCreate, model init
*
* @return
*/
private boolean onLoadModel() {
if (predictor == null) {
predictor = new Predictor();
}
return predictor.init(this, assetModelDirPath, assetlabelFilePath);
}
/**
* init engine
* call in onCreate
*
* @return
*/
private boolean onRunModel() {
try {
String assetImagePath = "images/5.jpg";
InputStream imageStream = getAssets().open(assetImagePath);
Bitmap image = BitmapFactory.decodeStream(imageStream);
// Input is Bitmap
predictor.setInputImage(image);
return predictor.isLoaded() && predictor.runModel();
} catch (IOException e) {
e.printStackTrace();
return false;
}
}
private void onRunModelSuccessed() {
Log.i(TAG, "onRunModelSuccessed");
textView.setText(predictor.outputResult);
imageView.setImageBitmap(predictor.outputImage);
}
private void onUnloadModel() {
if (predictor != null) {
predictor.releaseModel();
}
}
}

View File

@ -38,7 +38,7 @@ public class Predictor {
protected float scoreThreshold = 0.1f;
protected Bitmap inputImage = null;
protected Bitmap outputImage = null;
protected String outputResult = "";
protected volatile String outputResult = "";
protected float preprocessTime = 0;
protected float postprocessTime = 0;
@ -46,6 +46,16 @@ public class Predictor {
public Predictor() {
}
public boolean init(Context appCtx, String modelPath, String labelPath) {
isLoaded = loadModel(appCtx, modelPath, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
isLoaded = loadLabel(appCtx, labelPath);
return isLoaded;
}
public boolean init(Context appCtx, String modelPath, String labelPath, int cpuThreadNum, String cpuPowerMode,
String inputColorFormat,
long[] inputShape, float[] inputMean,
@ -76,11 +86,7 @@ public class Predictor {
Log.e(TAG, "Only BGR color format is supported.");
return false;
}
isLoaded = loadModel(appCtx, modelPath, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
isLoaded = loadLabel(appCtx, labelPath);
boolean isLoaded = init(appCtx, modelPath, labelPath);
if (!isLoaded) {
return false;
}
@ -132,7 +138,7 @@ public class Predictor {
paddlePredictor = null;
}
isLoaded = false;
cpuThreadNum = 4;
cpuThreadNum = 1;
cpuPowerMode = "LITE_POWER_HIGH";
modelPath = "";
modelName = "";
@ -222,7 +228,7 @@ public class Predictor {
for (int i = 0; i < warmupIterNum; i++) {
paddlePredictor.runImage(inputData, width, height, channels, inputImage);
}
warmupIterNum = 0; // 之后不要再warm了
warmupIterNum = 0; // do not need warm
// Run inference
start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputData, width, height, channels, inputImage);
@ -287,9 +293,7 @@ public class Predictor {
if (image == null) {
return;
}
// Scale image to the size of input tensor
Bitmap rgbaImage = image.copy(Bitmap.Config.ARGB_8888, true);
this.inputImage = rgbaImage;
this.inputImage = image.copy(Bitmap.Config.ARGB_8888, true);
}
private ArrayList<OcrResultModel> postprocess(ArrayList<OcrResultModel> results) {
@ -319,7 +323,7 @@ public class Predictor {
for (Point p : result.getPoints()) {
sb.append("(").append(p.x).append(",").append(p.y).append(") ");
}
Log.i(TAG, sb.toString());
Log.i(TAG, sb.toString()); // show LOG in Logcat panel
outputResultSb.append(i + 1).append(": ").append(result.getLabel()).append("\n");
}
outputResult = outputResultSb.toString();

View File

@ -5,7 +5,8 @@ import android.os.Bundle;
import android.preference.CheckBoxPreference;
import android.preference.EditTextPreference;
import android.preference.ListPreference;
import android.support.v7.app.ActionBar;
import androidx.appcompat.app.ActionBar;
import java.util.ArrayList;
import java.util.List;

View File

@ -2,6 +2,8 @@ package com.baidu.paddle.lite.demo.ocr;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.media.ExifInterface;
import android.os.Environment;
import java.io.*;
@ -110,4 +112,48 @@ public class Utils {
}
return Bitmap.createScaledBitmap(bitmap, newWidth, newHeight, true);
}
public static Bitmap rotateBitmap(Bitmap bitmap, int orientation) {
Matrix matrix = new Matrix();
switch (orientation) {
case ExifInterface.ORIENTATION_NORMAL:
return bitmap;
case ExifInterface.ORIENTATION_FLIP_HORIZONTAL:
matrix.setScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_180:
matrix.setRotate(180);
break;
case ExifInterface.ORIENTATION_FLIP_VERTICAL:
matrix.setRotate(180);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_TRANSPOSE:
matrix.setRotate(90);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_90:
matrix.setRotate(90);
break;
case ExifInterface.ORIENTATION_TRANSVERSE:
matrix.setRotate(-90);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_270:
matrix.setRotate(-90);
break;
default:
return bitmap;
}
try {
Bitmap bmRotated = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);
bitmap.recycle();
return bmRotated;
}
catch (OutOfMemoryError e) {
e.printStackTrace();
return null;
}
}
}

View File

@ -1,5 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
@ -96,4 +96,4 @@
</RelativeLayout>
</android.support.constraint.ConstraintLayout>
</androidx.constraintlayout.widget.ConstraintLayout>

View File

@ -0,0 +1,46 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- for MiniActivity Use Only -->
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintLeft_toRightOf="parent"
tools:context=".MainActivity">
<TextView
android:id="@+id/sample_text"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/imageView"
android:scrollbars="vertical"
/>
<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingTop="20dp"
android:paddingBottom="20dp"
app:layout_constraintBottom_toTopOf="@id/imageView"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:srcCompat="@tools:sample/avatars" />
<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="4dp"
android:text="Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
tools:layout_editor_absoluteX="161dp" />
</androidx.constraintlayout.widget.ConstraintLayout>

View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
<external-files-path name="my_images" path="Pictures" />
</paths>

View File

@ -1,8 +1,17 @@
project(ocr_system CXX C)
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
option(USE_TENSORRT "Compile demo with TensorRT." OFF)
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
SET(PADDLE_LIB "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
set(DEMO_NAME "ocr_system")
macro(safe_set_static_flag)
@ -15,24 +24,60 @@ macro(safe_set_static_flag)
endforeach(flag_var)
endmacro()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -g -fpermissive")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
message("flags" ${CMAKE_CXX_FLAGS})
set(CMAKE_CXX_FLAGS_RELEASE "-O3")
if (WITH_MKL)
ADD_DEFINITIONS(-DUSE_MKL)
endif()
if(NOT DEFINED PADDLE_LIB)
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
endif()
if(NOT DEFINED DEMO_NAME)
message(FATAL_ERROR "please set DEMO_NAME with -DDEMO_NAME=demo_name")
if(NOT DEFINED OPENCV_DIR)
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
endif()
set(OPENCV_DIR ${OPENCV_DIR})
if (WIN32)
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
include_directories("${PADDLE_LIB}/paddle/include")
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
else ()
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
include_directories("${PADDLE_LIB}/paddle/include")
link_directories("${PADDLE_LIB}/paddle/lib")
endif ()
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories("${PADDLE_LIB}/paddle/include")
if (WIN32)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
if (WITH_STATIC_LIB)
safe_set_static_flag()
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o3 -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
message("flags" ${CMAKE_CXX_FLAGS})
if (WITH_GPU)
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
endif()
if (NOT WIN32)
if (NOT DEFINED CUDNN_LIB)
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
endif()
endif(NOT WIN32)
endif()
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
@ -43,10 +88,12 @@ include_directories("${PADDLE_LIB}/third_party/eigen3")
include_directories("${CMAKE_SOURCE_DIR}/")
if (USE_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_ROOT}/include")
link_directories("${TENSORRT_ROOT}/lib")
if (NOT WIN32)
if (WITH_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_DIR}/include")
link_directories("${TENSORRT_DIR}/lib")
endif()
endif(NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
@ -57,18 +104,25 @@ link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
link_directories("${PADDLE_LIB}/paddle/lib")
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
if (WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib)
else ()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
endif ()
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
if (WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
else ()
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif ()
endif()
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
@ -82,24 +136,66 @@ else()
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
set(EXTERNAL_LIB "-lrt -ldl -lpthread -lm")
if (NOT WIN32)
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf z xxhash
${EXTERNAL_LIB} ${OpenCV_LIBS})
)
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
else()
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags_static libprotobuf xxhash)
set(DEPS ${DEPS} libcmt shlwapi)
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
endif(NOT WIN32)
if(WITH_GPU)
if (USE_TENSORRT)
set(DEPS ${DEPS}
${TENSORRT_ROOT}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS}
${TENSORRT_ROOT}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
if(NOT WIN32)
if (WITH_TENSORRT)
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/libcublas${CMAKE_SHARED_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
target_link_libraries(${DEMO_NAME} ${DEPS})
if (WIN32 AND WITH_MKL)
add_custom_command(TARGET ${DEMO_NAME} POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
endif()

View File

@ -0,0 +1,95 @@
# Visual Studio 2019 Community CMake 编译指南
PaddleOCR在Windows 平台下基于`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持所以如果你想使用CMake管理项目编译构建我们推荐你使用`Visual Studio 2019`环境下构建。
## 前置条件
* Visual Studio 2019
* CUDA 9.0 / CUDA 10.0cudnn 7+ 仅在使用GPU版本的预测库时需要
* CMake 3.0+
请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。
**下面所有示例以工作目录为 `D:\projects`演示**。
### Step1: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU`和`CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/windows_cpp_inference.html)
解压后`D:\projects\fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
### Step2: 安装配置OpenCV
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件将OpenCV解压至指定目录如`D:\projects\opencv`
3. 配置环境变量,如下流程所示
- 我的电脑->属性->高级系统设置->环境变量
- 在系统变量中找到Path如没有自行创建并双击编辑
- 新建将opencv路径填入并保存如`D:\projects\opencv\build\x64\vc14\bin`
### Step3: 使用Visual Studio 2019直接编译CMake
1. 打开Visual Studio 2019 Community点击`继续但无需代码`
![step2](https://paddleseg.bj.bcebos.com/inference/vs2019_step1.png)
2. 点击: `文件`->`打开`->`CMake`
![step2.1](https://paddleseg.bj.bcebos.com/inference/vs2019_step2.png)
选择项目代码所在路径,并打开`CMakeList.txt`
![step2.2](https://paddleseg.bj.bcebos.com/inference/vs2019_step3.png)
3. 点击:`项目`->`cpp_inference_demo的CMake设置`
![step3](https://paddleseg.bj.bcebos.com/inference/vs2019_step4.png)
4. 点击`浏览`,分别设置编译选项指定`CUDA`、`CUDNN_LIB`、`OpenCV`、`Paddle预测库`的路径
三个编译参数的含义说明如下(带`*`表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐**使用9.0、10.0版本不使用9.2、10.1等版本CUDA库**
| 参数名 | 含义 |
| ---- | ---- |
| *CUDA_LIB | CUDA的库路径 |
| *CUDNN_LIB | CUDNN的库路径 |
| OPENCV_DIR | OpenCV的安装路径 |
| PADDLE_LIB | Paddle预测库的路径 |
**注意:**
1. 使用`CPU`版预测库,请把`WITH_GPU`的勾去掉
2. 如果使用的是`openblas`版本,请把`WITH_MKL`勾去掉
![step4](https://paddleseg.bj.bcebos.com/inference/vs2019_step5.png)
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。
5. 点击`生成`->`全部生成`
![step6](https://paddleseg.bj.bcebos.com/inference/vs2019_step6.png)
### Step4: 预测及可视化
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
```
cd D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release
```
可执行文件`ocr_system.exe`即为样例的预测程序,其主要使用方法如下
```shell
#预测图片 `D:\projects\PaddleOCR\doc\imgs\10.jpg`
.\ocr_system.exe D:\projects\PaddleOCR\deploy\cpp_infer\tools\config.txt D:\projects\PaddleOCR\doc\imgs\10.jpg
```
第一个参数为配置文件路径,第二个参数为需要预测的图片路径。
### 注意
* 在Windows下的终端中执行文件exe时可能会发生乱码的现象此时需要在终端中输入`CHCP 65001`将终端的编码方式由GBK编码(默认)改为UTF-8编码更加具体的解释可以参考这篇博客[https://blog.csdn.net/qq_35038153/article/details/78430359](https://blog.csdn.net/qq_35038153/article/details/78430359)。

View File

@ -7,6 +7,9 @@
### 运行准备
- Linux环境推荐使用docker。
- Windows环境目前支持基于`Visual Studio 2019 Community`进行编译。
* 该文档主要介绍基于Linux环境的PaddleOCR C++预测流程如果需要在Windows下基于预测库进行C++预测,具体编译方法请参考[Windows下编译教程](./docs/windows_vs2019_build.md)
### 1.1 编译opencv库

View File

@ -44,7 +44,7 @@ Config::LoadConfig(const std::string &config_path) {
std::map<std::string, std::string> dict;
for (int i = 0; i < config.size(); i++) {
// pass for empty line or comment
if (config[i].size() <= 1 or config[i][0] == '#') {
if (config[i].size() <= 1 || config[i][0] == '#') {
continue;
}
std::vector<std::string> res = split(config[i], " ");

View File

@ -39,22 +39,21 @@ std::vector<std::string> Utility::ReadDict(const std::string &path) {
void Utility::VisualizeBboxes(
const cv::Mat &srcimg,
const std::vector<std::vector<std::vector<int>>> &boxes) {
cv::Point rook_points[boxes.size()][4];
for (int n = 0; n < boxes.size(); n++) {
for (int m = 0; m < boxes[0].size(); m++) {
rook_points[n][m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
}
}
cv::Mat img_vis;
srcimg.copyTo(img_vis);
for (int n = 0; n < boxes.size(); n++) {
const cv::Point *ppt[1] = {rook_points[n]};
cv::Point rook_points[4];
for (int m = 0; m < boxes[n].size(); m++) {
rook_points[m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
}
const cv::Point *ppt[1] = {rook_points};
int npt[] = {4};
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
}
cv::imwrite("./ocr_vis.png", img_vis);
std::cout << "The detection visualized image saved in ./ocr_vis.png.pn"
std::cout << "The detection visualized image saved in ./ocr_vis.png"
<< std::endl;
}

View File

@ -1,8 +1,7 @@
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=/your_cudnn_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
@ -11,7 +10,6 @@ cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \

View File

@ -15,8 +15,7 @@ det_model_dir ./inference/det_db
# rec config
rec_model_dir ./inference/rec_crnn
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt
img_path ../../doc/imgs/11.jpg
# show the detection results
visualize 0
visualize 1

View File

@ -18,7 +18,7 @@ Paddle Lite是飞桨轻量化推理引擎为手机、IOT端提供高效推理
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13)
4. [Windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#windows)
4. [Windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#id4)
### 1.2 准备预测库
@ -84,7 +84,7 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括
|模型简介|检测模型|识别模型|Paddle-Lite版本|
|-|-|-|-|
|超轻量级中文OCR opt优化模型|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)|2.6.1|
|超轻量级中文OCR opt优化模型|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)|develop|
如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](#2.2与手机联调)。

View File

@ -3,7 +3,7 @@
This tutorial will introduce how to use paddle-lite to deploy paddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
addle Lite is a lightweight inference engine for PaddlePaddle.
paddle-lite is a lightweight inference engine for PaddlePaddle.
It provides efficient inference capabilities for mobile phones and IOTs,
and extensively integrates cross-platform hardware to provide lightweight
deployment solutions for end-side deployment issues.
@ -17,7 +17,7 @@ deployment solutions for end-side deployment issues.
[build for Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker)
[build for Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android)
[build for MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13)
[build for windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#windows)
[build for windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#id4)
## 3. Download prebuild library for android and ios
@ -155,7 +155,7 @@ demo/cxx/ocr/
|-- debug/
| |--ch_det_mv3_db_opt.nb Detection model
| |--ch_rec_mv3_crnn_opt.nb Recognition model
| |--11.jpg image for OCR
| |--11.jpg Image for OCR
| |--ppocr_keys_v1.txt Dictionary file
| |--libpaddle_light_api_shared.so C++ .so file
| |--config.txt Config file

View File

@ -0,0 +1,77 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu'
from paddle_serving_server.web_service import WebService
import time
import re
import base64
class OCRService(WebService):
def init_det(self):
self.det_preprocess = Sequential([
ResizeByFactor(32, 960), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
def preprocess(self, feed=[], fetch=[]):
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
self.ori_h, self.ori_w, _ = im.shape
det_img = self.det_preprocess(im)
_, self.new_h, self.new_w = det_img.shape
return {"image": det_img[np.newaxis, :].copy()}, ["concat_1.tmp_0"]
def postprocess(self, feed={}, fetch=[], fetch_map=None):
det_out = fetch_map["concat_1.tmp_0"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
dt_boxes_list = self.post_func(det_out, [ratio_list])
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
return {"dt_boxes": dt_boxes.tolist()}
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_det_model")
if sys.argv[1] == 'gpu':
ocr_service.set_gpus("0")
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
ocr_service.prepare_server(workdir="workdir", port=9292)
ocr_service.init_det()
ocr_service.run_debugger_service()
ocr_service.run_web_service()

View File

@ -0,0 +1,78 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu':
from paddle_serving_server.web_service import WebService
import time
import re
import base64
class OCRService(WebService):
def init_det(self):
self.det_preprocess = Sequential([
ResizeByFactor(32, 960), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
def preprocess(self, feed=[], fetch=[]):
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
self.ori_h, self.ori_w, _ = im.shape
det_img = self.det_preprocess(im)
_, self.new_h, self.new_w = det_img.shape
print(det_img)
return {"image": det_img}, ["concat_1.tmp_0"]
def postprocess(self, feed={}, fetch=[], fetch_map=None):
det_out = fetch_map["concat_1.tmp_0"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
dt_boxes_list = self.post_func(det_out, [ratio_list])
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
return {"dt_boxes": dt_boxes.tolist()}
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_det_model")
if sys.argv[1] == 'gpu':
ocr_service.set_gpus("0")
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
ocr_service.init_det()
ocr_service.run_rpc_service()
ocr_service.run_web_service()

View File

@ -0,0 +1,113 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu':
from paddle_serving_server.web_service import WebService
from paddle_serving_app.local_predict import Debugger
import time
import re
import base64
class OCRService(WebService):
def init_det_debugger(self, det_model_config):
self.det_preprocess = Sequential([
ResizeByFactor(32, 960), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.det_client = Debugger()
if sys.argv[1] == 'gpu':
self.det_client.load_model_config(
det_model_config, gpu=True, profile=False)
elif sys.argv[1] == 'cpu':
self.det_client.load_model_config(
det_model_config, gpu=False, profile=False)
self.ocr_reader = OCRReader()
def preprocess(self, feed=[], fetch=[]):
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
ori_h, ori_w, _ = im.shape
det_img = self.det_preprocess(im)
_, new_h, new_w = det_img.shape
det_img = det_img[np.newaxis, :]
det_img = det_img.copy()
det_out = self.det_client.predict(
feed={"image": det_img}, fetch=["concat_1.tmp_0"])
filter_func = FilterBoxes(10, 10)
post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
sorted_boxes = SortedBoxes()
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
dt_boxes = sorted_boxes(dt_boxes)
get_rotate_crop_image = GetRotateCropImage()
img_list = []
max_wh_ratio = 0
for i, dtbox in enumerate(dt_boxes):
boximg = get_rotate_crop_image(im, dt_boxes[i])
img_list.append(boximg)
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
if len(img_list) == 0:
return [], []
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
max_wh_ratio).shape
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
for id, img in enumerate(img_list):
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
imgs[id] = norm_img
feed = {"image": imgs.copy()}
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
res_lst = []
for res in rec_res:
res_lst.append(res[0])
res = {"res": res_lst}
return res
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
ocr_service.prepare_server(workdir="workdir", port=9292)
ocr_service.init_det_debugger(det_model_config="ocr_det_model")
if sys.argv[1] == 'gpu':
ocr_service.run_debugger_service(gpu=True)
elif sys.argv[1] == 'cpu':
ocr_service.run_debugger_service()
ocr_service.run_web_service()

View File

@ -0,0 +1,37 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import requests
import json
import cv2
import base64
import os, sys
import time
def cv2_to_base64(image):
#data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(image).decode(
'utf8') #data.tostring()).decode('utf8')
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:9292/ocr/prediction"
test_img_dir = "../../doc/imgs/"
for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"feed": [{"image": image}], "fetch": ["res"]}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())

View File

@ -0,0 +1,105 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu':
from paddle_serving_server.web_service import WebService
import time
import re
import base64
class OCRService(WebService):
def init_det_client(self, det_port, det_client_config):
self.det_preprocess = Sequential([
ResizeByFactor(32, 960), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.det_client = Client()
self.det_client.load_client_config(det_client_config)
self.det_client.connect(["127.0.0.1:{}".format(det_port)])
self.ocr_reader = OCRReader()
def preprocess(self, feed=[], fetch=[]):
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
ori_h, ori_w, _ = im.shape
det_img = self.det_preprocess(im)
det_out = self.det_client.predict(
feed={"image": det_img}, fetch=["concat_1.tmp_0"])
_, new_h, new_w = det_img.shape
filter_func = FilterBoxes(10, 10)
post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
sorted_boxes = SortedBoxes()
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
dt_boxes = sorted_boxes(dt_boxes)
get_rotate_crop_image = GetRotateCropImage()
feed_list = []
img_list = []
max_wh_ratio = 0
for i, dtbox in enumerate(dt_boxes):
boximg = get_rotate_crop_image(im, dt_boxes[i])
img_list.append(boximg)
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for img in img_list:
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
feed = {"image": norm_img}
feed_list.append(feed)
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
return feed_list, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
res_lst = []
for res in rec_res:
res_lst.append(res[0])
res = {"res": res_lst}
return res
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
if sys.argv[1] == 'gpu':
ocr_service.set_gpus("0")
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
ocr_service.prepare_server(workdir="workdir", port=9292)
ocr_service.init_det_client(
det_port=9293,
det_client_config="ocr_det_client/serving_client_conf.prototxt")
ocr_service.run_rpc_service()
ocr_service.run_web_service()

View File

@ -1,28 +1,115 @@
# Paddle Serving 服务部署
# Paddle Serving 服务部署(Beta)
本教程将介绍基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)部署在线预测服务的详细步骤。
本教程将介绍基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)部署PaddleOCR在线预测服务的详细步骤。
## 快速启动服务
### 1. 准备环境
我们先安装Paddle Serving相关组件
我们推荐用户使用GPU来做Paddle Serving的OCR服务部署
**CUDA版本9.0**
**CUDNN版本7.0**
**操作系统版本CentOS 6以上**
**Python3操作指南**
```
#以下提供beta版本的paddle serving whl包欢迎试用正式版会在8月中正式上线
#GPU用户下载server包使用这个链接
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server_gpu-0.3.2-py3-none-any.whl
python -m pip install paddle_serving_server_gpu-0.3.2-py3-none-any.whl
#CPU版本使用这个链接
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server-0.3.2-py3-none-any.whl
python -m pip install paddle_serving_server-0.3.2-py3-none-any.whl
#客户端和App包使用以下链接CPUGPU通用
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_client-0.3.2-cp36-none-any.whl
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_app-0.1.2-py3-none-any.whl
python -m pip install paddle_serving_app-0.1.2-py3-none-any.whl paddle_serving_client-0.3.2-cp36-none-any.whl
```
**Python2操作指南**
```
#以下提供beta版本的paddle serving whl包欢迎试用正式版会在8月中正式上线
#GPU用户下载server包使用这个链接
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server_gpu-0.3.2-py2-none-any.whl
python -m pip install paddle_serving_server_gpu-0.3.2-py2-none-any.whl
#CPU版本使用这个链接
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server-0.3.2-py2-none-any.whl
python -m pip install paddle_serving_server-0.3.2-py2-none-any.whl
#客户端和App包使用以下链接CPUGPU通用
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_app-0.1.2-py2-none-any.whl
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_client-0.3.2-cp27-none-any.whl
python -m pip install paddle_serving_app-0.1.2-py2-none-any.whl paddle_serving_client-0.3.2-cp27-none-any.whl
```
### 2. 模型转换
可以使用`paddle_serving_app`提供的模型,执行下列命令
```
python -m paddle_serving_app.package --get_model ocr_rec
tar -xzvf ocr_rec.tar.gz
python -m paddle_serving_app.package --get_model ocr_det
tar -xzvf ocr_det.tar.gz
```
执行上述命令会下载`db_crnn_mobile`的模型,如果想要下载规模更大的`db_crnn_server`模型,可以在下载预测模型并解压之后。参考[如何从Paddle保存的预测模型转为Paddle Serving格式可部署的模型](https://github.com/PaddlePaddle/Serving/blob/develop/doc/INFERENCE_TO_SERVING_CN.md)。
### 3. 启动服务
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
|版本|特点|适用场景|
|-|-|-|
|标准版|||
|快速版|||
|标准版|稳定性高,分布式部署|适用于吞吐量大,需要跨机房部署的情况|
|快速版|部署方便,预测速度快|适用于对预测速度要求高,迭代速度快的场景|
#### 方式1. 启动标准版服务
```
# cpugpu启动二选一以下是cpu启动
python -m paddle_serving_server.serve --model ocr_det_model --port 9293
python ocr_web_server.py cpu
# gpu启动
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 9293 --gpu_id 0
python ocr_web_server.py gpu
```
#### 方式2. 启动快速版服务
```
# cpugpu启动二选一以下是cpu启动
python ocr_local_server.py cpu
# gpu启动
python ocr_local_server.py gpu
```
## 发送预测请求
```
python ocr_web_client.py
```
## 返回结果格式说明
返回结果是json格式
```
{u'result': {u'res': [u'\u571f\u5730\u6574\u6cbb\u4e0e\u571f\u58e4\u4fee\u590d\u7814\u7a76\u4e2d\u5fc3', u'\u534e\u5357\u519c\u4e1a\u5927\u5b661\u7d20\u56fe']}}
```
我们也可以打印结果json串中`res`字段的每一句话
```
土地整治与土壤修复研究中心
华南农业大学1素图
```
## 自定义修改服务逻辑
在`ocr_web_server.py`或是`ocr_local_server.py`当中的`preprocess`函数里面做了检测服务和识别服务的前处理,`postprocess`函数里面做了识别的后处理服务,可以在相应的函数中做修改。调用了`paddle_serving_app`库提供的常见CV模型的前处理/后处理库。
如果想要单独启动Paddle Serving的检测服务和识别服务参见下列表格, 执行对应的脚本即可并且在命令行参数注明用的CPU或是GPU来提供服务。
| 模型 | 标准版 | 快速版 |
| ---- | ----------------- | ------------------- |
| 检测 | det_web_server.py | det_local_server.py |
| 识别 | rec_web_server.py | rec_local_server.py |
更多信息参见[Paddle Serving](https://github.com/PaddlePaddle/Serving)

View File

@ -0,0 +1,72 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
from paddle_serving_server_gpu.web_service import WebService
import time
import re
import base64
class OCRService(WebService):
def init_rec(self):
self.ocr_reader = OCRReader()
def preprocess(self, feed=[], fetch=[]):
img_list = []
for feed_data in feed:
data = base64.b64decode(feed_data["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img_list.append(im)
max_wh_ratio = 0
for i, boximg in enumerate(img_list):
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
max_wh_ratio).shape
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
for i, img in enumerate(img_list):
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
imgs[i] = norm_img
feed = {"image": imgs.copy()}
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
res_lst = []
for res in rec_res:
res_lst.append(res[0])
res = {"res": res_lst}
return res
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
ocr_service.set_gpus("0")
ocr_service.init_rec()
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
ocr_service.run_debugger_service()
ocr_service.run_web_service()

View File

@ -0,0 +1,77 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu':
from paddle_serving_server.web_service import WebService
import time
import re
import base64
class OCRService(WebService):
def init_rec(self):
self.ocr_reader = OCRReader()
def preprocess(self, feed=[], fetch=[]):
# TODO: to handle batch rec images
img_list = []
for feed_data in feed:
data = base64.b64decode(feed_data["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img_list.append(im)
feed_list = []
max_wh_ratio = 0
for i, boximg in enumerate(img_list):
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for img in img_list:
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
feed = {"image": norm_img}
feed_list.append(feed)
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
return feed_list, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
res_lst = []
for res in rec_res:
res_lst.append(res[0])
res = {"res": res_lst}
return res
ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
ocr_service.init_rec()
if sys.argv[1] == 'gpu':
ocr_service.set_gpus("0")
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
ocr_service.run_rpc_service()
ocr_service.run_web_service()

BIN
doc/demo/build.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
doc/demo/error.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

BIN
doc/demo/proxy.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 185 KiB

View File

@ -0,0 +1,57 @@
# Android Demo 快速测试
### 1. 安装最新版本的Android Studio
可以从 https://developer.android.com/studio 下载。本Demo使用是4.0版本Android Studio编写。
### 2. 创建新项目
Demo测试的时候使用的是NDK 20b版本20版本以上均可以支持编译成功。
如果您是初学者可以用以下方式安装和测试NDK编译环境。
点击 File -> New ->New Project 新建 "Native C++" project
1. Start a new Android Studio project
在项目模版中选择 Native C++ 选择PaddleOCR/depoly/android_demo 路径
进入项目后会自动编译,第一次编译会花费较长的时间,建议添加代理加速下载。
**代理添加:**
选择 Android Studio -> Perferences -> Appearance & Behavior -> System Settings -> HTTP Proxy -> Manual proxy configuration
![](../demo/proxy.png)
2. 开始编译
点击编译按钮连接手机跟着Android Studio的引导完成操作。
在 Android Studio 里看到下图,表示编译完成:
![](../demo/build.png)
**提示:** 此时如果出现下列找不到OpenCV的报错信息请重新点击编译编译完成后退出项目再次进入。
![](../demo/error.png)
### 3. 发送到手机端
完成编译,点击运行,在手机端查看效果。
### 4. 如何自定义demo图片
1. 图片存放路径:android_demo/app/src/main/assets/images
将自定义图片放置在该路径下
2. 配置文件: android_demo/app/src/main/res/values/strings.xml
修改 IMAGE_PATH_DEFAULT 为自定义图片名即可
# 获得更多支持
前往[端计算模型生成平台EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite),获得更多开发支持:
- Demo APP可使用手机扫码安装方便手机端快速体验文字识别
- SDK模型被封装为适配不同芯片硬件和操作系统SDK包括完善的接口方便进行二次开发

View File

@ -60,6 +60,8 @@
| beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ |
| beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ |
| decay | 是否使用decay | \ | \ |
| function(decay) | 设置decay方式 | cosine_decay | 目前只支持cosin_decay |
| step_each_epoch | 每个epoch包含多少次迭代 | 20 | 计算方式total_image_num / (batch_size_per_card * card_size) |
| total_epoch | 总共迭代多少个epoch | 1000 | 与Global.epoch_num 一致 |
| function(decay) | 设置decay方式 | - | 目前支持cosine_decay与piecewise_decay |
| step_each_epoch | 每个epoch包含多少次迭代, cosine_decay时有效 | 20 | 计算方式total_image_num / (batch_size_per_card * card_size) |
| total_epoch | 总共迭代多少个epoch, cosine_decay时有效 | 1000 | 与Global.epoch_num 一致 |
| boundaries | 学习率下降时的迭代次数间隔, piecewise_decay时有效 | - | 参数为列表形式 |
| decay_rate | 学习率衰减系数, piecewise_decay时有效 | - | \ |

View File

@ -26,7 +26,7 @@ wget -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_la
提供的标注文件格式为,其中中间是"\t"分隔:
```
" 图像文件名 json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
```
json.dumps编码前的图像标注信息是包含多个字典的list字典中的 `points` 表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。
`transcription` 表示当前文本框的文字,在文本检测任务中并不需要这个信息。

View File

@ -3,15 +3,15 @@
经测试PaddleOCR可在glibc 2.23上运行您也可以测试其他glibc版本或安装glic 2.23
PaddleOCR 工作环境
- PaddlePaddle 1.7+
- python3
- python3.7
- glibc 2.23
- cuDNN 7.6+ (GPU)
建议使用我们提供的docker运行PaddleOCR有关docker使用请参考[链接](https://docs.docker.com/get-started/)。
建议使用我们提供的docker运行PaddleOCR有关docker、nvidia-docker使用请参考[链接](https://docs.docker.com/get-started/)。
*如您希望使用 mac 或 windows直接运行预测代码可以从第2步开始执行。*
1. 建议准备docker环境。第一次使用这个镜像会自动下载该镜像请耐心等待。
**1. 建议准备docker环境。第一次使用这个镜像会自动下载该镜像请耐心等待。**
```
# 切换到工作目录下
cd /home/Projects
@ -21,10 +21,10 @@ cd /home/Projects
如果您希望在CPU环境下使用docker使用docker而不是nvidia-docker创建docker
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
如果您的机器安装的是CUDA9请运行以下命令创建容器
如果使用CUDA9请运行以下命令创建容器
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
如果您的机器安装的是CUDA10请运行以下命令创建容器
如果使用CUDA10请运行以下命令创建容器
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev /bin/bash
您也可以访问[DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获取与您机器适配的镜像。
@ -47,7 +47,7 @@ docker images
hub.baidubce.com/paddlepaddle/paddle latest-gpu-cuda9.0-cudnn7-dev f56310dcc829
```
2. 安装PaddlePaddle Fluid v1.7
**2. 安装PaddlePaddle Fluid v1.7**
```
pip3 install --upgrade pip
@ -64,7 +64,7 @@ python3 -m pip install paddlepaddle==1.7.2 -i https://pypi.tuna.tsinghua.edu.cn/
更多的版本需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
```
3. 克隆PaddleOCR repo代码
**3. 克隆PaddleOCR repo代码**
```
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR
@ -75,8 +75,11 @@ git clone https://gitee.com/paddlepaddle/PaddleOCR
码云托管代码可能无法实时同步本github项目更新存在3~5天延时请优先使用推荐方式。
```
4. 安装第三方库
**4. 安装第三方库**
```
cd PaddleOCR
pip3 install -r requirments.txt
```
注意windows环境下建议从[这里](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)下载shapely安装包完成安装
直接通过pip安装的shapely库可能出现`[winRrror 126] 找不到指定模块的问题`。

View File

@ -21,12 +21,11 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
* 使用自己数据集:
若您希望使用自己的数据进行训练,请参考下文组织您的数据。
- 训练集
首先请将训练图片放入同一个文件夹train_images并用一个txt文件rec_gt_train.txt记录图片路径和标签。
* 注意: 默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错
**注意:** 默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错
```
" 图像文件名 图像标注信息 "
@ -41,12 +40,9 @@ PaddleOCR 提供了一份用于训练 icdar2015 数据集的标签文件,通
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# 测试集标签
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```
最终训练集应有如下文件结构:
```
|-train_data
|-ic15_data
@ -150,7 +146,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
* 提示: 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练PaddleOCR支持的识别算法有
**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练PaddleOCR支持的识别算法有
| 配置文件 | 算法名称 | backbone | trans | seq | pred |

View File

@ -28,21 +28,38 @@ deploy/hubserving/ocr_system/
# 安装paddlehub
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# 设置环境变量
# 在Linux下设置环境变量
export PYTHONPATH=.
# 在Windows下设置环境变量
SET PYTHONPATH=.
```
### 2. 安装服务模块
PaddleOCR提供3种服务模块根据需要安装所需模块。如:
PaddleOCR提供3种服务模块根据需要安装所需模块。
安装检测服务模块:
```hub install deploy/hubserving/ocr_det/```
* 在Linux环境下安装示例如下
```shell
# 安装检测服务模块:
hub install deploy/hubserving/ocr_det/
或,安装识别服务模块:
```hub install deploy/hubserving/ocr_rec/```
# 或,安装识别服务模块:
hub install deploy/hubserving/ocr_rec/
或,安装检测+识别串联服务模块:
```hub install deploy/hubserving/ocr_system/```
# 或,安装检测+识别串联服务模块:
hub install deploy/hubserving/ocr_system/
```
* 在Windows环境下(文件夹的分隔符为`\`),安装示例如下:
```shell
# 安装检测服务模块:
hub install deploy\hubserving\ocr_det\
# 或,安装识别服务模块:
hub install deploy\hubserving\ocr_rec\
# 或,安装检测+识别串联服务模块:
hub install deploy\hubserving\ocr_system\
```
### 3. 启动服务
#### 方式1. 命令行命令启动仅支持CPU
@ -69,7 +86,7 @@ $ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
#### 方式2. 配置文件启动支持CPU、GPU
**启动命令:**
```hub serving start --config/-c config.json```
```hub serving start -c config.json```
其中,`config.json`格式如下:
```python
@ -157,4 +174,3 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
- 5、重新启动服务
```hub serving start -m ocr_system```

View File

@ -1,4 +1,5 @@
# 更新
- 2020.7.23 发布7月21日B站直播课回放和PPTPaddleOCR开源大礼包全面解读[获取地址](https://aistudio.baidu.com/aistudio/course/introduce/1519)
- 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO支持iOS和Android系统
- 2020.7.15 完善预测部署添加基于C++预测引擎推理、服务化部署和端侧部署方案以及超轻量级中文OCR模型预测耗时Benchmark
- 2020.7.15 整理OCR相关数据集、常用数据标注以及合成工具

View File

@ -0,0 +1,60 @@
# Android Demo quick start
### 1. Install the latest version of Android Studio
It can be downloaded from https://developer.android.com/studio . This Demo is written by Android Studio version 4.0.
### 2. Create a new project
The NDK version 20b is used in the demo test, and the compilation can be successfully supported for version 20 and above.
If you are a beginner, you can install and test the NDK compilation environment in the following ways.
File -> New ->New Project to create "Native C++" project
1. Start a new Android Studio project
Select Native C++ in the project template, select Paddle OCR/deploy/android_demo path
After entering the project, it will be automatically compiled. The first compilation
will take a long time. It is recommended to add an agent to speed up the download.
**Agent add:**
Android Studio -> Perferences -> Appearance & Behavior -> System Settings -> HTTP Proxy -> Manual proxy configuration
![](../demo/proxy.png)
2. Start compilation
Click the compile button, connect the phone, and follow the instructions of Android Studio to complete the operation.
When you see the following picture in Android Studio, the compilation is complete:
![](../demo/build.png)
**Tip:** At this time, if the following error message that OpenCV cannot be found appears, please re-click compile,
exit the project after compiling, and enter again.
![](../demo/error.png)
### 3. Send to mobile
Complete the compilation, click Run, and check the effect on the mobile phone.
### 4. How to customize the demo picture
1. Image storage path: android_demo/app/src/main/assets/images
Place the custom picture under this path
2. Configuration file: android_demo/app/src/main/res/values/strings.xml
Modify IMAGE_PATH_DEFAULT to a custom picture name
# Get more support
Go to [EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite) to get more development support:
- Demo APP: You can use your mobile phone to scan the code to install, which is convenient for the mobile terminal to quickly experience text recognition
- SDK: The model is packaged to adapt to different chip hardware and operating system SDKs, including a complete interface to facilitate secondary development

View File

@ -60,6 +60,8 @@ Take `rec_icdar15_train.yml` as an example:
| beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ |
| decay | Whether to use decay | \ | \ |
| function(decay) | Set the decay function | cosine_decay | Only support cosine_decay |
| step_each_epoch | The number of steps in an epoch. | 20 | Calculation total_image_num / (batch_size_per_card * card_size) |
| total_epoch | The number of epochs | 1000 | Consistent with Global.epoch_num |
| function(decay) | Set the decay function | cosine_decay | Support cosine_decay and piecewise_decay |
| step_each_epoch | The number of steps in an epoch. Used in cosine_decay | 20 | Calculation total_image_num / (batch_size_per_card * card_size) |
| total_epoch | The number of epochs. Used in cosine_decay | 1000 | Consistent with Global.epoch_num |
| boundaries | The step intervals to reduce learning rate. Used in piecewise_decay | - | The format is list |
| decay_rate | Learning rate decay rate. Used in piecewise_decay | - | \ |

View File

@ -25,7 +25,7 @@ After decompressing the data set and downloading the annotation file, PaddleOCR/
The provided annotation file format is as follow, seperated by "\t":
```
" Image file name Image annotation information encoded by json.dumps"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
```
The image annotation after json.dumps() encoding is a list containing multiple dictionaries. The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

View File

@ -4,28 +4,28 @@ After testing, paddleocr can run on glibc 2.23. You can also test other glibc ve
PaddleOCR working environment:
- PaddlePaddle1.7
- python3
- python3.7
- glibc 2.23
It is recommended to use the docker provided by us to run PaddleOCR, please refer to the use of docker [link](https://docs.docker.com/get-started/).
*If you want to directly run the prediction code on mac or windows, you can start from step 2.*
1. (Recommended) Prepare a docker environment. The first time you use this image, it will be downloaded automatically. Please be patient.
**1. (Recommended) Prepare a docker environment. The first time you use this image, it will be downloaded automatically. Please be patient.**
```
# Switch to the working directory
cd /home/Projects
# You need to create a docker container for the first run, and do not need to run the current command when you run it again
# Create a docker container named ppocr and map the current directory to the /paddle directory of the container
#If you want to use docker in a CPU environment, use docker instead of nvidia-docker to create docker
#If using CPU, use docker instead of nvidia-docker to create docker
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
```
If you have cuda9 installed on your machine, please run the following command to create a container:
If using CUDA9, please run the following command to create a container:
```
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
```
If you have cuda10 installed on your machine, please run the following command to create a container:
If using CUDA10, please run the following command to create a container:
```
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev /bin/bash
```
@ -49,7 +49,7 @@ docker images
hub.baidubce.com/paddlepaddle/paddle latest-gpu-cuda9.0-cudnn7-dev f56310dcc829
```
2. Install PaddlePaddle Fluid v1.7 (the higher version is not supported yet, the adaptation work is in progress)
**2. Install PaddlePaddle Fluid v1.7 (the higher version is not supported yet, the adaptation work is in progress)**
```
pip3 install --upgrade pip
@ -65,7 +65,7 @@ python3 -m pip install paddlepaddle==1.7.2 -i https://pypi.tuna.tsinghua.edu.cn/
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
3. Clone PaddleOCR repo
**3. Clone PaddleOCR repo**
```
# Recommend
git clone https://github.com/PaddlePaddle/PaddleOCR
@ -77,8 +77,14 @@ git clone https://gitee.com/paddlepaddle/PaddleOCR
# Note: The cloud-hosting code may not be able to synchronize the update with this GitHub project in real time. There might be a delay of 3-5 days. Please give priority to the recommended method.
```
4. Install third-party libraries
**4. Install third-party libraries**
```
cd PaddleOCR
pip3 install -r requirments.txt
```
If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows.
Please try to download Shapely whl file using [http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)

View File

@ -29,26 +29,39 @@ The following steps take the 2-stage series service as an example. If only the d
# Install paddlehub
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# Set environment variables
# Set environment variables on Linux
export PYTHONPATH=.
# Set environment variables on Windows
SET PYTHONPATH=.
```
### 2. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs. Such as:
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs.
Install the detection service module:
* On Linux platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy/hubserving/ocr_det/
```
Or, install the recognition service module:
```shell
# Or, install the recognition service module:
hub install deploy/hubserving/ocr_rec/
```
Or, install the 2-stage series service module:
```shell
# Or, install the 2-stage series service module:
hub install deploy/hubserving/ocr_system/
```
* On Windows platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy\hubserving\ocr_det\
# Or, install the recognition service module:
hub install deploy\hubserving\ocr_rec\
# Or, install the 2-stage series service module:
hub install deploy\hubserving\ocr_system\
```
### 3. Start service
#### Way 1. Start with command line parameters (CPU only)

View File

@ -1,5 +1,5 @@
# RECENT UPDATES
- 2020.7.23, Release the playback and PPT of live class on BiliBili station, PaddleOCR Introduction, [address](https://aistudio.baidu.com/aistudio/course/introduce/1519)
- 2020.7.15, Add mobile App demo , support both iOS and Android ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the deployment ability, add the C + + inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight Chinese OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.

View File

@ -17,7 +17,7 @@ import cv2
import numpy as np
import json
import sys
from ppocr.utils.utility import initial_logger
from ppocr.utils.utility import initial_logger, check_and_read_gif
logger = initial_logger()
from .data_augment import AugmentData
@ -100,6 +100,8 @@ class DBProcessTrain(object):
def __call__(self, label_infor):
img_path, gt_label = self.convert_label_infor(label_infor)
imgvalue, flag = check_and_read_gif(img_path)
if not flag:
imgvalue = cv2.imread(img_path)
if imgvalue is None:
logger.info("{} does not exist!".format(img_path))

View File

@ -17,6 +17,7 @@ import cv2
import numpy as np
import json
import sys
import os
class EASTProcessTrain(object):
def __init__(self, params):
@ -52,7 +53,7 @@ class EASTProcessTrain(object):
label_infor = label_infor.decode()
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
substr = label_infor.strip("\n").split("\t")
img_path = self.img_set_dir + substr[0]
img_path = os.path.join(self.img_set_dir, substr[0])
label = json.loads(substr[1])
nBox = len(label)
wordBBs, txts, txt_tags = [], [], []

View File

@ -185,6 +185,7 @@ class SimpleReader(object):
if params['mode'] != 'test':
self.img_set_dir = params['img_set_dir']
self.label_file_path = params['label_file_path']
self.use_gpu = params['use_gpu']
self.char_ops = params['char_ops']
self.image_shape = params['image_shape']
self.loss_type = params['loss_type']
@ -213,6 +214,15 @@ class SimpleReader(object):
if self.mode != 'train':
process_id = 0
def get_device_num():
if self.use_gpu:
gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
gpu_num = len(gpus.split(','))
return gpu_num
else:
cpu_num = os.environ.get("CPU_NUM", 1)
return int(cpu_num)
def sample_iter_reader():
if self.mode != 'train' and self.infer_img is not None:
image_file_list = get_image_file_list(self.infer_img)
@ -233,10 +243,16 @@ class SimpleReader(object):
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
if sys.platform == "win32":
if sys.platform == "win32" and self.num_workers != 1:
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
if self.batch_size * get_device_num(
) * self.num_workers > img_num:
raise Exception(
"The number of the whole data ({}) is smaller than the batch_size * devices_num * num_workers ({})".
format(img_num, self.batch_size * get_device_num() *
self.num_workers))
for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]]
substr = label_infor.decode('utf-8').strip("\n").split("\t")

View File

@ -360,7 +360,7 @@ def process_image(img,
text = char_ops.encode(label)
if len(text) == 0 or len(text) > max_text_length:
logger.info(
"Warning in ppocr/data/rec/img_tools.py:line362: Wrong data type."
"Warning in ppocr/data/rec/img_tools.py: Wrong data type."
"Excepted string with length between 1 and {}, but "
"got '{}'. Label is '{}'".format(max_text_length,
len(text), label))

View File

@ -31,16 +31,28 @@ __all__ = [
class MobileNetV3():
def __init__(self, params):
self.scale = params['scale']
model_name = params['model_name']
self.scale = params.get("scale", 0.5)
model_name = params.get("model_name", "small")
large_stride = params.get("large_stride", [1, 2, 2, 2])
small_stride = params.get("small_stride", [2, 2, 2, 2])
assert isinstance(large_stride, list), "large_stride type must " \
"be list but got {}".format(type(large_stride))
assert isinstance(small_stride, list), "small_stride type must " \
"be list but got {}".format(type(small_stride))
assert len(large_stride) == 4, "large_stride length must be " \
"4 but got {}".format(len(large_stride))
assert len(small_stride) == 4, "small_stride length must be " \
"4 but got {}".format(len(small_stride))
self.inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', (2, 1)],
[3, 16, 16, False, 'relu', large_stride[0]],
[3, 64, 24, False, 'relu', (large_stride[1], 1)],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', (2, 1)],
[5, 72, 40, True, 'relu', (large_stride[2], 1)],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hard_swish', 1],
@ -49,7 +61,7 @@ class MobileNetV3():
[3, 184, 80, False, 'hard_swish', 1],
[3, 480, 112, True, 'hard_swish', 1],
[3, 672, 112, True, 'hard_swish', 1],
[5, 672, 160, True, 'hard_swish', (2, 1)],
[5, 672, 160, True, 'hard_swish', (large_stride[3], 1)],
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
@ -58,15 +70,15 @@ class MobileNetV3():
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', (2, 1)],
[3, 72, 24, False, 'relu', (2, 1)],
[3, 16, 16, True, 'relu', (small_stride[0], 1)],
[3, 72, 24, False, 'relu', (small_stride[1], 1)],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hard_swish', (2, 1)],
[5, 96, 40, True, 'hard_swish', (small_stride[2], 1)],
[5, 240, 40, True, 'hard_swish', 1],
[5, 240, 40, True, 'hard_swish', 1],
[5, 120, 48, True, 'hard_swish', 1],
[5, 144, 48, True, 'hard_swish', 1],
[5, 288, 96, True, 'hard_swish', (2, 1)],
[5, 288, 96, True, 'hard_swish', (small_stride[3], 1)],
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
@ -78,7 +90,7 @@ class MobileNetV3():
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert self.scale in supported_scale, \
"supported scale are {} but input scale is {}".format(supported_scale, scale)
"supported scales are {} but input scale is {}".format(supported_scale, self.scale)
def __call__(self, input):
scale = self.scale

View File

@ -32,6 +32,7 @@ class CTCPredict(object):
self.char_num = params['char_num']
self.encoder = SequenceEncoder(params)
self.encoder_type = params['encoder_type']
self.fc_decay = params.get("fc_decay", 0.0004)
def __call__(self, inputs, labels=None, mode=None):
encoder_features = self.encoder(inputs)
@ -39,7 +40,7 @@ class CTCPredict(object):
encoder_features = fluid.layers.concat(encoder_features, axis=1)
name = "ctc_fc"
para_attr, bias_attr = get_para_bias_attr(
l2_decay=0.0004, k=encoder_features.shape[1], name=name)
l2_decay=self.fc_decay, k=encoder_features.shape[1], name=name)
predict = fluid.layers.fc(input=encoder_features,
size=self.char_num + 1,
param_attr=para_attr,

View File

@ -14,6 +14,9 @@
import logging
import os
import imghdr
import cv2
from paddle import fluid
def initial_logger():
@ -61,19 +64,31 @@ def get_image_file_list(img_file):
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
if single_file.split('.')[-1] in img_end:
imgs_lists.append(os.path.join(img_file, single_file))
file_path = os.path.join(img_file, single_file)
if imghdr.what(file_path) in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
return imgs_lists
from paddle import fluid
def check_and_read_gif(img_path):
if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
gif = cv2.VideoCapture(img_path)
ret, frame = gif.read()
if not ret:
logging.info("Cannot read {}. This gif image maybe corrupted.")
return None, False
if len(frame.shape) == 2 or frame.shape[-1] == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
imgvalue = frame[:, :, ::-1]
return imgvalue, True
return None, False
def create_multi_devices_program(program, loss_var_name):

View File

@ -41,27 +41,11 @@ from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import create_module
def main():
config = program.load_config(FLAGS.config)
program.merge_config(FLAGS.opt)
logger.info(config)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
program.check_gpu(use_gpu)
alg = config['Global']['algorithm']
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
config['Global']['char_ops'] = CharacterOps(config['Global'])
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
startup_prog = fluid.Program()
eval_program = fluid.Program()
startup_prog, eval_program, place, config, _ = program.preprocess()
feeded_var_names, target_vars, fetches_var_name = program.build_export(
config, eval_program, startup_prog)
@ -88,6 +72,4 @@ def main():
if __name__ == '__main__':
parser = program.ArgsParser()
FLAGS = parser.parse_args()
main()

View File

@ -20,7 +20,7 @@ sys.path.append(os.path.join(__dir__, '../..'))
import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
import cv2
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
@ -135,7 +135,12 @@ if __name__ == "__main__":
text_detector = TextDetector(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
@ -147,6 +152,7 @@ if __name__ == "__main__":
print("Predict time of %s:" % image_file, elapse)
src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = image_file.split("/")[-1]
cv2.imwrite("./inference_results/det_res_%s" % img_name_pure, src_im)
cv2.imwrite(
os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
if count > 1:
print("Avg Time:", total_time / (count - 1))

View File

@ -20,7 +20,7 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
import cv2
import copy
import numpy as np
@ -122,9 +122,9 @@ class TextRecognizer(object):
ind = np.argmax(probs, axis=1)
blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0]
score = np.mean(probs[valid_ind, ind[valid_ind]])
if len(valid_ind) == 0:
continue
score = np.mean(probs[valid_ind, ind[valid_ind]])
# rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
else:
@ -153,7 +153,9 @@ def main(args):
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
img = cv2.imread(image_file, cv2.IMREAD_COLOR)
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue

View File

@ -27,7 +27,7 @@ import copy
import numpy as np
import math
import time
from ppocr.utils.utility import get_image_file_list
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from PIL import Image
from tools.infer.utility import draw_ocr
from tools.infer.utility import draw_ocr_box_txt
@ -49,16 +49,21 @@ class TextSystem(object):
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(max(np.linalg.norm(points[0] - points[1]),
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(max(np.linalg.norm(points[0] - points[3]),
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0],
[img_crop_width, 0],
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(img, M, (img_crop_width, img_crop_height),
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
@ -119,6 +124,8 @@ def main(args):
is_visualize = True
tackle_img_num = 0
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
@ -130,14 +137,14 @@ def main(args):
dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime
print("Predict time of %s: %.3fs" % (image_file, elapse))
drop_score = 0.5
dt_num = len(dt_boxes)
dt_boxes_final = []
for dno in range(dt_num):
text, score = rec_res[dno]
if score >= 0.5:
if score >= drop_score:
text_str = "%s, %.3f" % (text, score)
print(text_str)
dt_boxes_final.append(dt_boxes[dno])
if is_visualize:
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
@ -146,7 +153,12 @@ def main(args):
scores = [rec_res[i][1] for i in range(len(rec_res))]
draw_img = draw_ocr(
image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
image,
boxes,
txts,
scores,
draw_txt=True,
drop_score=drop_score)
draw_img_save = "./inference_results/"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)

View File

@ -169,7 +169,7 @@ def draw_ocr_box_txt(image, boxes, txts):
img_right = Image.new('RGB', (w, h), (255, 255, 255))
import random
# 每次使用相同的随机种子 ,可以保证两次颜色一致
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
draw_right = ImageDraw.Draw(img_right)

View File

@ -42,27 +42,10 @@ from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from paddle.fluid.contrib.model_stat import summary
def main():
config = program.load_config(FLAGS.config)
program.merge_config(FLAGS.opt)
logger.info(config)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
program.check_gpu(use_gpu)
alg = config['Global']['algorithm']
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
config['Global']['char_ops'] = CharacterOps(config['Global'])
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
startup_program = fluid.Program()
train_program = fluid.Program()
train_build_outputs = program.build(
config, train_program, startup_program, mode='train')
train_loader = train_build_outputs[0]
@ -91,7 +74,7 @@ def main():
# dump mode structure
if config['Global']['debug']:
if 'attention' in config['Global']['loss_type']:
if train_alg_type == 'rec' and 'attention' in config['Global']['loss_type']:
logger.warning('Does not suport dump attention...')
else:
summary(train_program)
@ -109,15 +92,13 @@ def main():
'fetch_name_list':eval_fetch_name_list,\
'fetch_varname_list':eval_fetch_varname_list}
if alg in ['EAST', 'DB']:
if train_alg_type == 'det':
program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
else:
program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)
def test_reader():
config = program.load_config(FLAGS.config)
program.merge_config(FLAGS.opt)
logger.info(config)
train_reader = reader_main(config=config, mode="train")
import time
@ -136,7 +117,6 @@ def test_reader():
if __name__ == '__main__':
parser = program.ArgsParser()
FLAGS = parser.parse_args()
startup_program, train_program, place, config, train_alg_type = program.preprocess()
main()
# test_reader()