fix distill model predict
This commit is contained in:
parent
5947c56773
commit
fffd556cab
|
@ -34,23 +34,21 @@ import paddle
|
||||||
from ppocr.data import create_operators, transform
|
from ppocr.data import create_operators, transform
|
||||||
from ppocr.modeling.architectures import build_model
|
from ppocr.modeling.architectures import build_model
|
||||||
from ppocr.postprocess import build_post_process
|
from ppocr.postprocess import build_post_process
|
||||||
from ppocr.utils.save_load import init_model
|
from ppocr.utils.save_load import init_model, load_dygraph_params
|
||||||
from ppocr.utils.utility import get_image_file_list
|
from ppocr.utils.utility import get_image_file_list
|
||||||
import tools.program as program
|
import tools.program as program
|
||||||
|
|
||||||
|
|
||||||
def draw_det_res(dt_boxes, config, img, img_name):
|
def draw_det_res(dt_boxes, config, img, img_name, save_path):
|
||||||
if len(dt_boxes) > 0:
|
if len(dt_boxes) > 0:
|
||||||
import cv2
|
import cv2
|
||||||
src_im = img
|
src_im = img
|
||||||
for box in dt_boxes:
|
for box in dt_boxes:
|
||||||
box = box.astype(np.int32).reshape((-1, 1, 2))
|
box = box.astype(np.int32).reshape((-1, 1, 2))
|
||||||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||||
save_det_path = os.path.dirname(config['Global'][
|
if not os.path.exists(save_path):
|
||||||
'save_res_path']) + "/det_results/"
|
os.makedirs(save_path)
|
||||||
if not os.path.exists(save_det_path):
|
save_path = os.path.join(save_path, os.path.basename(img_name))
|
||||||
os.makedirs(save_det_path)
|
|
||||||
save_path = os.path.join(save_det_path, os.path.basename(img_name))
|
|
||||||
cv2.imwrite(save_path, src_im)
|
cv2.imwrite(save_path, src_im)
|
||||||
logger.info("The detected Image saved in {}".format(save_path))
|
logger.info("The detected Image saved in {}".format(save_path))
|
||||||
|
|
||||||
|
@ -61,8 +59,7 @@ def main():
|
||||||
# build model
|
# build model
|
||||||
model = build_model(config['Architecture'])
|
model = build_model(config['Architecture'])
|
||||||
|
|
||||||
init_model(config, model)
|
_ = load_dygraph_params(config, model, logger, None)
|
||||||
|
|
||||||
# build post process
|
# build post process
|
||||||
post_process_class = build_post_process(config['PostProcess'])
|
post_process_class = build_post_process(config['PostProcess'])
|
||||||
|
|
||||||
|
@ -96,17 +93,41 @@ def main():
|
||||||
images = paddle.to_tensor(images)
|
images = paddle.to_tensor(images)
|
||||||
preds = model(images)
|
preds = model(images)
|
||||||
post_result = post_process_class(preds, shape_list)
|
post_result = post_process_class(preds, shape_list)
|
||||||
boxes = post_result[0]['points']
|
|
||||||
# write result
|
src_img = cv2.imread(file)
|
||||||
|
|
||||||
dt_boxes_json = []
|
dt_boxes_json = []
|
||||||
|
# parser boxes if post_result is dict
|
||||||
|
if isinstance(post_result, dict):
|
||||||
|
det_box_json = {}
|
||||||
|
for k in post_result.keys():
|
||||||
|
boxes = post_result[k][0]['points']
|
||||||
|
dt_boxes_list = []
|
||||||
|
for box in boxes:
|
||||||
|
tmp_json = {"transcription": ""}
|
||||||
|
tmp_json['points'] = box.tolist()
|
||||||
|
dt_boxes_list.append(tmp_json)
|
||||||
|
det_box_json[k] = dt_boxes_list
|
||||||
|
save_det_path = os.path.dirname(config['Global'][
|
||||||
|
'save_res_path']) + "/det_results_{}/".format(k)
|
||||||
|
draw_det_res(boxes, config, src_img, file, save_det_path)
|
||||||
|
else:
|
||||||
|
boxes = post_result[0]['points']
|
||||||
|
dt_boxes_json = []
|
||||||
|
# write result
|
||||||
for box in boxes:
|
for box in boxes:
|
||||||
tmp_json = {"transcription": ""}
|
tmp_json = {"transcription": ""}
|
||||||
tmp_json['points'] = box.tolist()
|
tmp_json['points'] = box.tolist()
|
||||||
dt_boxes_json.append(tmp_json)
|
dt_boxes_json.append(tmp_json)
|
||||||
|
save_det_path = os.path.dirname(config['Global'][
|
||||||
|
'save_res_path']) + "/det_results/"
|
||||||
|
draw_det_res(boxes, config, src_img, file, save_det_path)
|
||||||
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
|
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
|
||||||
fout.write(otstr.encode())
|
fout.write(otstr.encode())
|
||||||
src_img = cv2.imread(file)
|
|
||||||
draw_det_res(boxes, config, src_img, file)
|
save_det_path = os.path.dirname(config['Global'][
|
||||||
|
'save_res_path']) + "/det_results/"
|
||||||
|
draw_det_res(boxes, config, src_img, file, save_det_path)
|
||||||
logger.info("success!")
|
logger.info("success!")
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue