fix distill model predict

This commit is contained in:
LDOUBLEV 2021-09-03 12:09:50 +00:00
parent 5947c56773
commit fffd556cab
1 changed files with 38 additions and 17 deletions

View File

@ -34,23 +34,21 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import get_image_file_list
import tools.program as program
def draw_det_res(dt_boxes, config, img, img_name):
def draw_det_res(dt_boxes, config, img, img_name, save_path):
if len(dt_boxes) > 0:
import cv2
src_im = img
for box in dt_boxes:
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
if not os.path.exists(save_det_path):
os.makedirs(save_det_path)
save_path = os.path.join(save_det_path, os.path.basename(img_name))
if not os.path.exists(save_path):
os.makedirs(save_path)
save_path = os.path.join(save_path, os.path.basename(img_name))
cv2.imwrite(save_path, src_im)
logger.info("The detected Image saved in {}".format(save_path))
@ -61,8 +59,7 @@ def main():
# build model
model = build_model(config['Architecture'])
init_model(config, model)
_ = load_dygraph_params(config, model, logger, None)
# build post process
post_process_class = build_post_process(config['PostProcess'])
@ -96,17 +93,41 @@ def main():
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds, shape_list)
boxes = post_result[0]['points']
# write result
src_img = cv2.imread(file)
dt_boxes_json = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_json.append(tmp_json)
# parser boxes if post_result is dict
if isinstance(post_result, dict):
det_box_json = {}
for k in post_result.keys():
boxes = post_result[k][0]['points']
dt_boxes_list = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_list.append(tmp_json)
det_box_json[k] = dt_boxes_list
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results_{}/".format(k)
draw_det_res(boxes, config, src_img, file, save_det_path)
else:
boxes = post_result[0]['points']
dt_boxes_json = []
# write result
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_json.append(tmp_json)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
fout.write(otstr.encode())
src_img = cv2.imread(file)
draw_det_res(boxes, config, src_img, file)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
logger.info("success!")