# 服务部署 PaddleOCR提供2种服务部署方式: - 基于HubServing的部署:已集成到PaddleOCR中([code](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/hubserving)),按照本教程使用; - 基于PaddleServing的部署:详见PaddleServing官网[demo](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/ocr),后续也将集成到PaddleOCR。 服务部署目录下包括检测、识别、2阶段串联三种服务包,根据需求选择相应的服务包进行安装和启动。目录如下: ``` deploy/hubserving/ └─ ocr_det 检测模块服务包 └─ ocr_rec 识别模块服务包 └─ ocr_system 检测+识别串联服务包 ``` 每个服务包下包含3个文件。以2阶段串联服务包为例,目录如下: ``` deploy/hubserving/ocr_system/ └─ __init__.py 空文件,必选 └─ config.json 配置文件,可选,使用配置启动服务时作为参数传入 └─ module.py 主模块,必选,包含服务的完整逻辑 └─ params.py 参数文件,必选,包含模型路径、前后处理参数等参数 ``` ## 快速启动服务 以下步骤以检测+识别2阶段串联服务为例,如果只需要检测服务或识别服务,替换相应文件路径即可。 ### 1. 准备环境 ```shell # 安装paddlehub pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple # 在Linux下设置环境变量 export PYTHONPATH=. # 在Windows下设置环境变量 SET PYTHONPATH=. ``` ### 2. 安装服务模块 PaddleOCR提供3种服务模块,根据需要安装所需模块。 * 在Linux环境下,安装示例如下: ```shell # 安装检测服务模块: hub install deploy/hubserving/ocr_det/ # 或,安装识别服务模块: hub install deploy/hubserving/ocr_rec/ # 或,安装检测+识别串联服务模块: hub install deploy/hubserving/ocr_system/ ``` * 在Windows环境下(文件夹的分隔符为`\`),安装示例如下: ```shell # 安装检测服务模块: hub install deploy\hubserving\ocr_det\ # 或,安装识别服务模块: hub install deploy\hubserving\ocr_rec\ # 或,安装检测+识别串联服务模块: hub install deploy\hubserving\ocr_system\ ``` ### 3. 启动服务 #### 方式1. 命令行命令启动(仅支持CPU) **启动命令:** ```shell $ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \ --port XXXX \ --use_multiprocess \ --workers \ ``` **参数:** |参数|用途| |-|-| |--modules/-m|PaddleHub Serving预安装模型,以多个Module==Version键值对的形式列出
*`当不指定Version时,默认选择最新版本`*| |--port/-p|服务端口,默认为8866| |--use_multiprocess|是否启用并发方式,默认为单进程方式,推荐多核CPU机器使用此方式
*`Windows操作系统只支持单进程方式`*| |--workers|在并发方式下指定的并发任务数,默认为`2*cpu_count-1`,其中`cpu_count`为CPU核数| 如启动串联服务: ```hub serving start -m ocr_system``` 这样就完成了一个服务化API的部署,使用默认端口号8866。 #### 方式2. 配置文件启动(支持CPU、GPU) **启动命令:** ```hub serving start -c config.json``` 其中,`config.json`格式如下: ```python { "modules_info": { "ocr_system": { "init_args": { "version": "1.0.0", "use_gpu": true }, "predict_args": { } } }, "port": 8868, "use_multiprocess": false, "workers": 2 } ``` - `init_args`中的可配参数与`module.py`中的`_initialize`函数接口一致。其中,**当`use_gpu`为`true`时,表示使用GPU启动服务**。 - `predict_args`中的可配参数与`module.py`中的`predict`函数接口一致。 **注意:** - 使用配置文件启动服务时,其他参数会被忽略。 - 如果使用GPU预测(即,`use_gpu`置为`true`),则需要在启动服务之前,设置CUDA_VISIBLE_DEVICES环境变量,如:```export CUDA_VISIBLE_DEVICES=0```,否则不用设置。 - **`use_gpu`不可与`use_multiprocess`同时为`true`**。 如,使用GPU 3号卡启动串联服务: ```shell export CUDA_VISIBLE_DEVICES=3 hub serving start -c deploy/hubserving/ocr_system/config.json ``` ## 发送预测请求 配置好服务端,可使用以下命令发送预测请求,获取预测结果: ```python tools/test_hubserving.py server_url image_path``` 需要给脚本传递2个参数: - **server_url**:服务地址,格式为 `http://[ip_address]:[port]/predict/[module_name]` 例如,如果使用配置文件启动检测、识别、检测+识别2阶段服务,那么发送请求的url将分别是: `http://127.0.0.1:8866/predict/ocr_det` `http://127.0.0.1:8867/predict/ocr_rec` `http://127.0.0.1:8868/predict/ocr_system` - **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径 访问示例: ```python tools/test_hubserving.py http://127.0.0.1:8868/predict/ocr_system ./doc/imgs/``` ## 返回结果格式说明 返回结果为列表(list),列表中的每一项为词典(dict),词典一共可能包含3种字段,信息如下: |字段名称|数据类型|意义| |-|-|-| |text|str|文本内容| |confidence|float| 文本识别置信度| |text_region|list|文本位置坐标| 不同模块返回的字段不同,如,文本识别服务模块返回结果不含`text_region`字段,具体信息如下: |字段名/模块名|ocr_det|ocr_rec|ocr_system| |-|-|-|-| |text||✔|✔| |confidence||✔|✔| |text_region|✔||✔| **说明:** 如果需要增加、删除、修改返回字段,可在相应模块的`module.py`文件中进行修改,完整流程参考下一节自定义修改服务模块。 ## 自定义修改服务模块 如果需要修改服务逻辑,你一般需要操作以下步骤(以修改`ocr_system`为例): - 1、 停止服务 ```hub serving stop --port/-p XXXX``` - 2、 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。 例如,如果需要替换部署服务所用模型,则需要到`params.py`中修改模型路径参数`det_model_dir`和`rec_model_dir`,当然,同时可能还需要修改其他相关参数,请根据实际情况修改调试。 建议修改后先直接运行`module.py`调试,能正确运行预测后再启动服务测试。 - 3、 卸载旧服务包 ```hub uninstall ocr_system``` - 4、 安装修改后的新服务包 ```hub install deploy/hubserving/ocr_system/``` - 5、重新启动服务 ```hub serving start -m ocr_system```