# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) import tools.infer.utility as utility from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.utils.utility import get_image_file_list, check_and_read_gif import cv2 import copy import numpy as np import math import time from paddle import fluid class TextClassifier(object): def __init__(self, args): if args.use_pdserving is False: self.predictor, self.input_tensor, self.output_tensors = \ utility.create_predictor(args, mode="cls") self.use_zero_copy_run = args.use_zero_copy_run self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")] self.cls_batch_num = args.rec_batch_num self.label_list = args.label_list self.cls_thresh = args.cls_thresh def resize_norm_img(self, img): imgC, imgH, imgW = self.cls_image_shape h = img.shape[0] w = img.shape[1] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') if self.cls_image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def __call__(self, img_list): img_list = copy.deepcopy(img_list) img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the cls process indices = np.argsort(np.array(width_list)) cls_res = [['', 0.0]] * img_num batch_num = self.cls_batch_num predict_time = 0 for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[indices[ino]]) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() starttime = time.time() if self.use_zero_copy_run: self.input_tensor.copy_from_cpu(norm_img_batch) self.predictor.zero_copy_run() else: norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) self.predictor.run([norm_img_batch]) prob_out = self.output_tensors[0].copy_to_cpu() label_out = self.output_tensors[1].copy_to_cpu() if len(label_out.shape) != 1: prob_out, label_out = label_out, prob_out elapse = time.time() - starttime predict_time += elapse for rno in range(len(label_out)): label_idx = label_out[rno] score = prob_out[rno][label_idx] label = self.label_list[label_idx] cls_res[indices[beg_img_no + rno]] = [label, score] if '180' in label and score > self.cls_thresh: img_list[indices[beg_img_no + rno]] = cv2.rotate( img_list[indices[beg_img_no + rno]], 1) return img_list, cls_res, predict_time def main(args): image_file_list = get_image_file_list(args.image_dir) text_classifier = TextClassifier(args) valid_image_file_list = [] img_list = [] for image_file in image_file_list[:10]: img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) if img is None: logger.info("error in loading image:{}".format(image_file)) continue valid_image_file_list.append(image_file) img_list.append(img) try: img_list, cls_res, predict_time = text_classifier(img_list) except Exception as e: print(e) exit() for ino in range(len(img_list)): print("Predicts of %s:%s" % (valid_image_file_list[ino], cls_res[ino])) print("Total predict time for %d images:%.3f" % (len(img_list), predict_time)) if __name__ == "__main__": main(utility.parse_args())