# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import program from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from eval_utils.eval_det_utils import eval_det_run from eval_utils.eval_rec_utils import test_rec_benchmark from eval_utils.eval_rec_utils import eval_rec_run from eval_utils.eval_cls_utils import eval_cls_run def main(): startup_prog, eval_program, place, config, train_alg_type = program.preprocess( ) eval_build_outputs = program.build( config, eval_program, startup_prog, mode='test') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) exe = fluid.Executor(place) exe.run(startup_prog) init_model(config, eval_program, exe) if train_alg_type == 'det': eval_reader = reader_main(config=config, mode="eval") eval_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} metrics = eval_det_run(exe, config, eval_info_dict, "eval") logger.info("Eval result: {}".format(metrics)) elif train_alg_type == 'cls': eval_reader = reader_main(config=config, mode="eval") eval_info_dict = {'program': eval_program, \ 'reader': eval_reader, \ 'fetch_name_list': eval_fetch_name_list, \ 'fetch_varname_list': eval_fetch_varname_list} metrics = eval_cls_run(exe, eval_info_dict) logger.info("Eval result: {}".format(metrics)) else: reader_type = config['Global']['reader_yml'] if "benchmark" not in reader_type: eval_reader = reader_main(config=config, mode="eval") eval_info_dict = {'program': eval_program, \ 'reader': eval_reader, \ 'fetch_name_list': eval_fetch_name_list, \ 'fetch_varname_list': eval_fetch_varname_list} metrics = eval_rec_run(exe, config, eval_info_dict, "eval") logger.info("Eval result: {}".format(metrics)) else: eval_info_dict = {'program':eval_program,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} test_rec_benchmark(exe, config, eval_info_dict) if __name__ == '__main__': main()