# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the Apache 2.0 License.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# Apache 2.0 License for more details.

import distance
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from .parallel import parallel_process
from tqdm import tqdm


class TableTree(Tree):
    def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
        self.tag = tag
        self.colspan = colspan
        self.rowspan = rowspan
        self.content = content
        self.children = list(children)

    def bracket(self):
        """Show tree using brackets notation"""
        if self.tag == 'td':
            result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
                     (self.tag, self.colspan, self.rowspan, self.content)
        else:
            result = '"tag": %s' % self.tag
        for child in self.children:
            result += child.bracket()
        return "{{{}}}".format(result)


class CustomConfig(Config):
    @staticmethod
    def maximum(*sequences):
        """Get maximum possible value
        """
        return max(map(len, sequences))

    def normalized_distance(self, *sequences):
        """Get distance from 0 to 1
        """
        return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)

    def rename(self, node1, node2):
        """Compares attributes of trees"""
        #print(node1.tag)
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print(node1.content, )
                return self.normalized_distance(node1.content, node2.content)
        return 0.



class CustomConfig_del_short(Config):
    @staticmethod
    def maximum(*sequences):
        """Get maximum possible value
        """
        return max(map(len, sequences))

    def normalized_distance(self, *sequences):
        """Get distance from 0 to 1
        """
        return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)

    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print('before')
                #print(node1.content, node2.content)
                #print('after')
                node1_content = node1.content
                node2_content = node2.content
                if len(node1_content) < 3:
                    node1_content = ['####']
                if len(node2_content) < 3:
                    node2_content = ['####']   
                return self.normalized_distance(node1_content, node2_content)
        return 0.

class CustomConfig_del_block(Config):
    @staticmethod
    def maximum(*sequences):
        """Get maximum possible value
        """
        return max(map(len, sequences))

    def normalized_distance(self, *sequences):
        """Get distance from 0 to 1
        """
        return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)

    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                
                node1_content = node1.content
                node2_content = node2.content
                while ' '  in node1_content:
                    print(node1_content.index(' '))
                    node1_content.pop(node1_content.index(' '))
                while ' ' in node2_content:
                    print(node2_content.index(' '))
                    node2_content.pop(node2_content.index(' '))
                return self.normalized_distance(node1_content, node2_content)
        return 0.

class TEDS(object):
    ''' Tree Edit Distance basead Similarity
    '''

    def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
        assert isinstance(n_jobs, int) and (
            n_jobs >= 1), 'n_jobs must be an integer greather than 1'
        self.structure_only = structure_only
        self.n_jobs = n_jobs
        self.ignore_nodes = ignore_nodes
        self.__tokens__ = []

    def tokenize(self, node):
        ''' Tokenizes table cells
        '''
        self.__tokens__.append('<%s>' % node.tag)
        if node.text is not None:
            self.__tokens__ += list(node.text)
        for n in node.getchildren():
            self.tokenize(n)
        if node.tag != 'unk':
            self.__tokens__.append('</%s>' % node.tag)
        if node.tag != 'td' and node.tail is not None:
            self.__tokens__ += list(node.tail)

    def load_html_tree(self, node, parent=None):
        ''' Converts HTML tree to the format required by apted
        '''
        global __tokens__
        if node.tag == 'td':
            if self.structure_only:
                cell = []
            else:
                self.__tokens__ = []
                self.tokenize(node)
                cell = self.__tokens__[1:-1].copy()
            new_node = TableTree(node.tag,
                                 int(node.attrib.get('colspan', '1')),
                                 int(node.attrib.get('rowspan', '1')),
                                 cell, *deque())
        else:
            new_node = TableTree(node.tag, None, None, None, *deque())
        if parent is not None:
            parent.children.append(new_node)
        if node.tag != 'td':
            for n in node.getchildren():
                self.load_html_tree(n, new_node)
        if parent is None:
            return new_node

    def evaluate(self, pred, true):
        ''' Computes TEDS score between the prediction and the ground truth of a
            given sample
        '''
        if (not pred) or (not true):
            return 0.0
        parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
        pred = html.fromstring(pred, parser=parser)
        true = html.fromstring(true, parser=parser)
        if pred.xpath('body/table') and true.xpath('body/table'):
            pred = pred.xpath('body/table')[0]
            true = true.xpath('body/table')[0]
            if self.ignore_nodes:
                etree.strip_tags(pred, *self.ignore_nodes)
                etree.strip_tags(true, *self.ignore_nodes)
            n_nodes_pred = len(pred.xpath(".//*"))
            n_nodes_true = len(true.xpath(".//*"))
            n_nodes = max(n_nodes_pred, n_nodes_true)
            tree_pred = self.load_html_tree(pred)
            tree_true = self.load_html_tree(true)
            distance = APTED(tree_pred, tree_true,
                             CustomConfig()).compute_edit_distance()
            return 1.0 - (float(distance) / n_nodes)
        else:
            return 0.0

    def batch_evaluate(self, pred_json, true_json):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
            @params pred_json: {'FILENAME': 'HTML CODE', ...}
            @params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
            @output: {'FILENAME': 'TEDS SCORE', ...}
        '''
        samples = true_json.keys()
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_json.get(
                filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
        else:
            inputs = [{'pred': pred_json.get(
                filename, ''), 'true': true_json[filename]['html']} for filename in samples]
            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        scores = dict(zip(samples, scores))
        return scores

    def batch_evaluate_html(self, pred_htmls, true_htmls):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
        '''
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_html, true_html) for (
                pred_html, true_html) in zip(pred_htmls, true_htmls)]
        else:
            inputs = [{"pred": pred_html, "true": true_html} for(
                pred_html, true_html) in zip(pred_htmls, true_htmls)]

            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        return scores


if __name__ == '__main__':
    import json
    import pprint
    with open('sample_pred.json') as fp:
        pred_json = json.load(fp)
    with open('sample_gt.json') as fp:
        true_json = json.load(fp)
    teds = TEDS(n_jobs=4)
    scores = teds.batch_evaluate(pred_json, true_json)
    pp = pprint.PrettyPrinter()
    pp.pprint(scores)