# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import cv2 import sys import numpy as np import os import time import re import base64 from tools.infer.predict_cls import TextClassifier from params import read_params global_args = read_params() if global_args.use_gpu: from paddle_serving_server_gpu.web_service import WebService else: from paddle_serving_server.web_service import WebService class TextClassifierHelper(TextClassifier): def __init__(self, args): self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")] self.cls_batch_num = args.rec_batch_num self.label_list = args.label_list self.cls_thresh = args.cls_thresh self.fetch = [ "save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0" ] def preprocess(self, img_list): args = {} img_num = len(img_list) args["img_list"] = img_list # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the cls process indices = np.argsort(np.array(width_list)) args["indices"] = indices cls_res = [['', 0.0]] * img_num batch_num = self.cls_batch_num predict_time = 0 beg_img_no, end_img_no = 0, img_num norm_img_batch = [] max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[indices[ino]]) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) if img_num > 1: feed = [{ "image": norm_img_batch[x] } for x in range(norm_img_batch.shape[0])] else: feed = {"image": norm_img_batch[0]} return feed, self.fetch, args def postprocess(self, outputs, args): prob_out = outputs[0] label_out = outputs[1] indices = args["indices"] img_list = args["img_list"] cls_res = [['', 0.0]] * len(label_out) if len(label_out.shape) != 1: prob_out, label_out = label_out, prob_out for rno in range(len(label_out)): label_idx = label_out[rno] score = prob_out[rno][label_idx] label = self.label_list[label_idx] cls_res[indices[rno]] = [label, score] if '180' in label and score > self.cls_thresh: img_list[indices[rno]] = cv2.rotate(img_list[indices[rno]], 1) return img_list, cls_res class OCRService(WebService): def init_rec(self): self.text_classifier = TextClassifierHelper(global_args) def preprocess(self, feed=[], fetch=[]): # TODO: to handle batch rec images img_list = [] for feed_data in feed: data = base64.b64decode(feed_data["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) img_list.append(im) feed, fetch, self.tmp_args = self.text_classifier.preprocess(img_list) return feed, fetch def postprocess(self, feed={}, fetch=[], fetch_map=None): outputs = [fetch_map[x] for x in self.text_classifier.fetch] for x in fetch_map.keys(): if ".lod" in x: self.tmp_args[x] = fetch_map[x] _, rec_res = self.text_classifier.postprocess(outputs, self.tmp_args) res = { "direction": [x[0] for x in rec_res], "score": [str(x[1]) for x in rec_res] } return res if __name__ == "__main__": ocr_service = OCRService(name="ocr") ocr_service.load_model_config(global_args.cls_model_dir) ocr_service.init_rec() if global_args.use_gpu: ocr_service.prepare_server( workdir="workdir", port=9292, device="gpu", gpuid=0) else: ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu") ocr_service.run_rpc_service() ocr_service.run_web_service()