# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program


def draw_det_res(dt_boxes, config, img, img_name):
    if len(dt_boxes) > 0:
        import cv2
        src_im = img
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        save_det_path = os.path.dirname(config['Global'][
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
        save_path = os.path.join(save_det_path, os.path.basename(img_name))
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'])

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image', 'shape']
        transforms.append(op)

    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
    with open(save_res_path, "wb") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)

            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = paddle.to_tensor(images)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)
            boxes = post_result[0]['points']
            # write resule
            dt_boxes_json = []
            for box in boxes:
                tmp_json = {"transcription": ""}
                tmp_json['points'] = box.tolist()
                dt_boxes_json.append(tmp_json)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
            fout.write(otstr.encode())
            src_img = cv2.imread(file)
            draw_det_res(boxes, config, src_img, file)
    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()