286 lines
10 KiB
Python
286 lines
10 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
from arch.base_module import MiddleNet, ResBlock
|
|
from arch.encoder import Encoder
|
|
from arch.decoder import Decoder, DecoderUnet, SingleDecoder
|
|
from utils.load_params import load_dygraph_pretrain
|
|
from utils.logging import get_logger
|
|
|
|
|
|
class StyleTextRec(nn.Layer):
|
|
def __init__(self, config):
|
|
super(StyleTextRec, self).__init__()
|
|
self.logger = get_logger()
|
|
self.text_generator = TextGenerator(config["Predictor"][
|
|
"text_generator"])
|
|
self.bg_generator = BgGeneratorWithMask(config["Predictor"][
|
|
"bg_generator"])
|
|
self.fusion_generator = FusionGeneratorSimple(config["Predictor"][
|
|
"fusion_generator"])
|
|
bg_generator_pretrain = config["Predictor"]["bg_generator"]["pretrain"]
|
|
text_generator_pretrain = config["Predictor"]["text_generator"][
|
|
"pretrain"]
|
|
fusion_generator_pretrain = config["Predictor"]["fusion_generator"][
|
|
"pretrain"]
|
|
load_dygraph_pretrain(
|
|
self.bg_generator,
|
|
self.logger,
|
|
path=bg_generator_pretrain,
|
|
load_static_weights=False)
|
|
load_dygraph_pretrain(
|
|
self.text_generator,
|
|
self.logger,
|
|
path=text_generator_pretrain,
|
|
load_static_weights=False)
|
|
load_dygraph_pretrain(
|
|
self.fusion_generator,
|
|
self.logger,
|
|
path=fusion_generator_pretrain,
|
|
load_static_weights=False)
|
|
|
|
def forward(self, style_input, text_input):
|
|
text_gen_output = self.text_generator.forward(style_input, text_input)
|
|
fake_text = text_gen_output["fake_text"]
|
|
fake_sk = text_gen_output["fake_sk"]
|
|
bg_gen_output = self.bg_generator.forward(style_input)
|
|
bg_encode_feature = bg_gen_output["bg_encode_feature"]
|
|
bg_decode_feature1 = bg_gen_output["bg_decode_feature1"]
|
|
bg_decode_feature2 = bg_gen_output["bg_decode_feature2"]
|
|
fake_bg = bg_gen_output["fake_bg"]
|
|
|
|
fusion_gen_output = self.fusion_generator.forward(fake_text, fake_bg)
|
|
fake_fusion = fusion_gen_output["fake_fusion"]
|
|
return {
|
|
"fake_fusion": fake_fusion,
|
|
"fake_text": fake_text,
|
|
"fake_sk": fake_sk,
|
|
"fake_bg": fake_bg,
|
|
}
|
|
|
|
|
|
class TextGenerator(nn.Layer):
|
|
def __init__(self, config):
|
|
super(TextGenerator, self).__init__()
|
|
name = config["module_name"]
|
|
encode_dim = config["encode_dim"]
|
|
norm_layer = config["norm_layer"]
|
|
conv_block_dropout = config["conv_block_dropout"]
|
|
conv_block_num = config["conv_block_num"]
|
|
conv_block_dilation = config["conv_block_dilation"]
|
|
if norm_layer == "InstanceNorm2D":
|
|
use_bias = True
|
|
else:
|
|
use_bias = False
|
|
self.encoder_text = Encoder(
|
|
name=name + "_encoder_text",
|
|
in_channels=3,
|
|
encode_dim=encode_dim,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation)
|
|
self.encoder_style = Encoder(
|
|
name=name + "_encoder_style",
|
|
in_channels=3,
|
|
encode_dim=encode_dim,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation)
|
|
self.decoder_text = Decoder(
|
|
name=name + "_decoder_text",
|
|
encode_dim=encode_dim,
|
|
out_channels=int(encode_dim / 2),
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation,
|
|
out_conv_act="Tanh",
|
|
out_conv_act_attr=None)
|
|
self.decoder_sk = Decoder(
|
|
name=name + "_decoder_sk",
|
|
encode_dim=encode_dim,
|
|
out_channels=1,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation,
|
|
out_conv_act="Sigmoid",
|
|
out_conv_act_attr=None)
|
|
|
|
self.middle = MiddleNet(
|
|
name=name + "_middle_net",
|
|
in_channels=int(encode_dim / 2) + 1,
|
|
mid_channels=encode_dim,
|
|
out_channels=3,
|
|
use_bias=use_bias)
|
|
|
|
def forward(self, style_input, text_input):
|
|
style_feature = self.encoder_style.forward(style_input)["res_blocks"]
|
|
text_feature = self.encoder_text.forward(text_input)["res_blocks"]
|
|
fake_c_temp = self.decoder_text.forward([text_feature,
|
|
style_feature])["out_conv"]
|
|
fake_sk = self.decoder_sk.forward([text_feature,
|
|
style_feature])["out_conv"]
|
|
fake_text = self.middle(paddle.concat((fake_c_temp, fake_sk), axis=1))
|
|
return {"fake_sk": fake_sk, "fake_text": fake_text}
|
|
|
|
|
|
class BgGeneratorWithMask(nn.Layer):
|
|
def __init__(self, config):
|
|
super(BgGeneratorWithMask, self).__init__()
|
|
name = config["module_name"]
|
|
encode_dim = config["encode_dim"]
|
|
norm_layer = config["norm_layer"]
|
|
conv_block_dropout = config["conv_block_dropout"]
|
|
conv_block_num = config["conv_block_num"]
|
|
conv_block_dilation = config["conv_block_dilation"]
|
|
self.output_factor = config.get("output_factor", 1.0)
|
|
|
|
if norm_layer == "InstanceNorm2D":
|
|
use_bias = True
|
|
else:
|
|
use_bias = False
|
|
|
|
self.encoder_bg = Encoder(
|
|
name=name + "_encoder_bg",
|
|
in_channels=3,
|
|
encode_dim=encode_dim,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation)
|
|
|
|
self.decoder_bg = SingleDecoder(
|
|
name=name + "_decoder_bg",
|
|
encode_dim=encode_dim,
|
|
out_channels=3,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation,
|
|
out_conv_act="Tanh",
|
|
out_conv_act_attr=None)
|
|
|
|
self.decoder_mask = Decoder(
|
|
name=name + "_decoder_mask",
|
|
encode_dim=encode_dim // 2,
|
|
out_channels=1,
|
|
use_bias=use_bias,
|
|
norm_layer=norm_layer,
|
|
act="ReLU",
|
|
act_attr=None,
|
|
conv_block_dropout=conv_block_dropout,
|
|
conv_block_num=conv_block_num,
|
|
conv_block_dilation=conv_block_dilation,
|
|
out_conv_act="Sigmoid",
|
|
out_conv_act_attr=None)
|
|
|
|
self.middle = MiddleNet(
|
|
name=name + "_middle_net",
|
|
in_channels=3 + 1,
|
|
mid_channels=encode_dim,
|
|
out_channels=3,
|
|
use_bias=use_bias)
|
|
|
|
def forward(self, style_input):
|
|
encode_bg_output = self.encoder_bg(style_input)
|
|
decode_bg_output = self.decoder_bg(encode_bg_output["res_blocks"],
|
|
encode_bg_output["down2"],
|
|
encode_bg_output["down1"])
|
|
|
|
fake_c_temp = decode_bg_output["out_conv"]
|
|
fake_bg_mask = self.decoder_mask.forward(encode_bg_output[
|
|
"res_blocks"])["out_conv"]
|
|
fake_bg = self.middle(
|
|
paddle.concat(
|
|
(fake_c_temp, fake_bg_mask), axis=1))
|
|
return {
|
|
"bg_encode_feature": encode_bg_output["res_blocks"],
|
|
"bg_decode_feature1": decode_bg_output["up1"],
|
|
"bg_decode_feature2": decode_bg_output["up2"],
|
|
"fake_bg": fake_bg,
|
|
"fake_bg_mask": fake_bg_mask,
|
|
}
|
|
|
|
|
|
class FusionGeneratorSimple(nn.Layer):
|
|
def __init__(self, config):
|
|
super(FusionGeneratorSimple, self).__init__()
|
|
name = config["module_name"]
|
|
encode_dim = config["encode_dim"]
|
|
norm_layer = config["norm_layer"]
|
|
conv_block_dropout = config["conv_block_dropout"]
|
|
conv_block_dilation = config["conv_block_dilation"]
|
|
if norm_layer == "InstanceNorm2D":
|
|
use_bias = True
|
|
else:
|
|
use_bias = False
|
|
|
|
self._conv = nn.Conv2D(
|
|
in_channels=6,
|
|
out_channels=encode_dim,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
groups=1,
|
|
weight_attr=paddle.ParamAttr(name=name + "_conv_weights"),
|
|
bias_attr=False)
|
|
|
|
self._res_block = ResBlock(
|
|
name="{}_conv_block".format(name),
|
|
channels=encode_dim,
|
|
norm_layer=norm_layer,
|
|
use_dropout=conv_block_dropout,
|
|
use_dilation=conv_block_dilation,
|
|
use_bias=use_bias)
|
|
|
|
self._reduce_conv = nn.Conv2D(
|
|
in_channels=encode_dim,
|
|
out_channels=3,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
groups=1,
|
|
weight_attr=paddle.ParamAttr(name=name + "_reduce_conv_weights"),
|
|
bias_attr=False)
|
|
|
|
def forward(self, fake_text, fake_bg):
|
|
fake_concat = paddle.concat((fake_text, fake_bg), axis=1)
|
|
fake_concat_tmp = self._conv(fake_concat)
|
|
output_res = self._res_block(fake_concat_tmp)
|
|
fake_fusion = self._reduce_conv(output_res)
|
|
return {"fake_fusion": fake_fusion}
|