3.8 KiB
Executable File
3.8 KiB
Executable File
算法介绍
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在英文公开数据集上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考PP-OCR v2.0 系列模型下载。
1.文本检测算法
PaddleOCR开源的文本检测算法列表:
在ICDAR2015文本检测公开数据集上,算法效果如下:
模型 | 骨干网络 | precision | recall | Hmean | 下载链接 |
---|---|---|---|---|---|
EAST | ResNet50_vd | 88.76% | 81.36% | 84.90% | 下载链接 |
EAST | MobileNetV3 | 78.24% | 79.15% | 78.69% | 下载链接 |
DB | ResNet50_vd | 86.41% | 78.72% | 82.38% | 下载链接 |
DB | MobileNetV3 | 77.29% | 73.08% | 75.12% | 下载链接 |
SAST | ResNet50_vd | 91.83% | 81.80% | 86.52% | 下载链接 |
在Total-text文本检测公开数据集上,算法效果如下:
模型 | 骨干网络 | precision | recall | Hmean | 下载链接 |
---|---|---|---|---|---|
SAST | ResNet50_vd | 89.05% | 76.80% | 82.47% | 下载链接 |
说明: SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:百度云地址 (提取码: 2bpi)
PaddleOCR文本检测算法的训练和使用请参考文档教程中模型训练/评估中的文本检测部分。
2.文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表:
- CRNN(paper)[7](ppocr推荐)
- Rosetta(paper)[10]
- STAR-Net(paper)[11] coming soon
- RARE(paper)[12] coming soon
- SRN(paper)[5] coming soon
参考[DTRB]3文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
模型 | 骨干网络 | Avg Accuracy | 模型存储命名 | 下载链接 |
---|---|---|---|---|
Rosetta | Resnet34_vd | 80.9% | rec_r34_vd_none_none_ctc | 下载链接 |
Rosetta | MobileNetV3 | 78.05% | rec_mv3_none_none_ctc | 下载链接 |
CRNN | Resnet34_vd | 82.76% | rec_r34_vd_none_bilstm_ctc | 下载链接 |
CRNN | MobileNetV3 | 79.97% | rec_mv3_none_bilstm_ctc | 下载链接 |
PaddleOCR文本识别算法的训练和使用请参考文档教程中模型训练/评估中的文本识别部分。