PaddleOCR/tools/infer/predict_cls.py

150 lines
5.7 KiB
Python
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import math
import time
import traceback
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
logger = get_logger()
class TextClassifier(object):
def __init__(self, args):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num
self.cls_thresh = args.cls_thresh
postprocess_params = {
'name': 'ClsPostProcess',
"label_list": args.label_list,
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors = \
utility.create_predictor(args, 'cls', logger)
def resize_norm_img(self, img):
imgC, imgH, imgW = self.cls_image_shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if self.cls_image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def __call__(self, img_list):
img_list = copy.deepcopy(img_list)
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the cls process
indices = np.argsort(np.array(width_list))
cls_res = [['', 0.0]] * img_num
batch_num = self.cls_batch_num
elapse = 0
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
self.predictor.try_shrink_memory()
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
for rno in range(len(cls_result)):
label, score = cls_result[rno]
cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1)
return img_list, cls_res, elapse
def main(args):
image_file_list = get_image_file_list(args.image_dir)
text_classifier = TextClassifier(args)
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(img)
try:
img_list, cls_res, predict_time = text_classifier(img_list)
except:
logger.info(traceback.format_exc())
logger.info(
"ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
cls_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())