63 lines
2.3 KiB
Python
63 lines
2.3 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import random
|
|
import cv2
|
|
|
|
|
|
class DatasetSampler(object):
|
|
def __init__(self, config):
|
|
self.image_home = config["StyleSampler"]["image_home"]
|
|
label_file = config["StyleSampler"]["label_file"]
|
|
self.dataset_with_label = config["StyleSampler"]["with_label"]
|
|
self.height = config["Global"]["image_height"]
|
|
self.index = 0
|
|
with open(label_file, "r") as f:
|
|
label_raw = f.read()
|
|
self.path_label_list = label_raw.split("\n")[:-1]
|
|
assert len(self.path_label_list) > 0
|
|
random.shuffle(self.path_label_list)
|
|
|
|
def sample(self):
|
|
if self.index >= len(self.path_label_list):
|
|
random.shuffle(self.path_label_list)
|
|
self.index = 0
|
|
if self.dataset_with_label:
|
|
path_label = self.path_label_list[self.index]
|
|
rel_image_path, label = path_label.split('\t')
|
|
else:
|
|
rel_image_path = self.path_label_list[self.index]
|
|
label = None
|
|
img_path = "{}/{}".format(self.image_home, rel_image_path)
|
|
image = cv2.imread(img_path)
|
|
origin_height = image.shape[0]
|
|
ratio = self.height / origin_height
|
|
width = int(image.shape[1] * ratio)
|
|
height = int(image.shape[0] * ratio)
|
|
image = cv2.resize(image, (width, height))
|
|
|
|
self.index += 1
|
|
if label:
|
|
return {"image": image, "label": label}
|
|
else:
|
|
return {"image": image}
|
|
|
|
|
|
def duplicate_image(image, width):
|
|
image_width = image.shape[1]
|
|
dup_num = width // image_width + 1
|
|
image = np.tile(image, reps=[1, dup_num, 1])
|
|
cropped_image = image[:, :width, :]
|
|
return cropped_image
|