PaddleOCR/paddleocr.py

378 lines
15 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import logging
import numpy as np
from pathlib import Path
from tools.infer import predict_system
from ppocr.utils.logging import get_logger
logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from ppocr.utils.network import maybe_download, download_with_progressbar, is_link, confirm_model_dir_url
from tools.infer.utility import draw_ocr, str2bool
from ppstructure.utility import init_args, draw_structure_result
from ppstructure.predict_system import OCRSystem, save_structure_res
__all__ = ['PaddleOCR', 'PPStructure', 'draw_ocr', 'draw_structure_result', 'save_structure_res','download_with_progressbar']
model_urls = {
'det': {
'ch':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
'en':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar',
'structure': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar'
},
'rec': {
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
},
'en': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/en_dict.txt'
},
'french': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/french_dict.txt'
},
'german': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/german_dict.txt'
},
'korean': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/korean_dict.txt'
},
'japan': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/japan_dict.txt'
},
'chinese_cht': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/chinese_cht_dict.txt'
},
'ta': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/ta_dict.txt'
},
'te': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/te_dict.txt'
},
'ka': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/ka_dict.txt'
},
'latin': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/latin_dict.txt'
},
'arabic': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/arabic_dict.txt'
},
'cyrillic': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/cyrillic_dict.txt'
},
'devanagari': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/devanagari_dict.txt'
},
'structure': {
'url': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar',
'dict_path': 'ppocr/utils/dict/table_dict.txt'
}
},
'cls': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar',
'table': {
'url': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar',
'dict_path': 'ppocr/utils/dict/table_structure_dict.txt'
}
}
SUPPORT_DET_MODEL = ['DB']
VERSION = '2.2.0.1'
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
def parse_args(mMain=True):
import argparse
parser = init_args()
parser.add_help = mMain
parser.add_argument("--lang", type=str, default='ch')
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
parser.add_argument("--type", type=str, default='ocr')
for action in parser._actions:
if action.dest in ['rec_char_dict_path', 'table_char_dict_path']:
action.default = None
if mMain:
return parser.parse_args()
else:
inference_args_dict = {}
for action in parser._actions:
inference_args_dict[action.dest] = action.default
return argparse.Namespace(**inference_args_dict)
def parse_lang(lang):
latin_lang = [
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga',
'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms',
'mt', 'nl', 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk',
'sl', 'sq', 'sv', 'sw', 'tl', 'tr', 'uz', 'vi'
]
arabic_lang = ['ar', 'fa', 'ug', 'ur']
cyrillic_lang = [
'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd',
'ava', 'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
]
devanagari_lang = [
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new',
'gom', 'sa', 'bgc'
]
if lang in latin_lang:
lang = "latin"
elif lang in arabic_lang:
lang = "arabic"
elif lang in cyrillic_lang:
lang = "cyrillic"
elif lang in devanagari_lang:
lang = "devanagari"
assert lang in model_urls[
'rec'], 'param lang must in {}, but got {}'.format(
model_urls['rec'].keys(), lang)
if lang == "ch":
det_lang = "ch"
elif lang == 'structure':
det_lang = 'structure'
else:
det_lang = "en"
return lang, det_lang
class PaddleOCR(predict_system.TextSystem):
def __init__(self, **kwargs):
"""
paddleocr package
args:
**kwargs: other params show in paddleocr --help
"""
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
if not params.show_log:
logger.setLevel(logging.INFO)
self.use_angle_cls = params.use_angle_cls
lang, det_lang = parse_lang(params.lang)
# init model dir
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'det', det_lang),
model_urls['det'][det_lang])
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'rec', lang),
model_urls['rec'][lang]['url'])
params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'cls'),
model_urls['cls'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.cls_model_dir, cls_url)
if params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0)
if params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(Path(__file__).parent / model_urls['rec'][lang]['dict_path'])
print(params)
# init det_model and rec_model
super().__init__(params)
def ocr(self, img, det=True, rec=True, cls=True):
"""
ocr with paddleocr
args
img: img for ocr, support ndarray, img_path and list or ndarray
det: use text detection or not, if false, only rec will be exec. default is True
rec: use text recognition or not, if false, only det will be exec. default is True
"""
assert isinstance(img, (np.ndarray, list, str))
if isinstance(img, list) and det == True:
logger.error('When input a list of images, det must be false')
exit(0)
if cls == True and self.use_angle_cls == False:
logger.warning(
'Since the angle classifier is not initialized, the angle classifier will not be uesd during the forward process'
)
if isinstance(img, str):
# download net image
if img.startswith('http'):
download_with_progressbar(img, 'tmp.jpg')
img = 'tmp.jpg'
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
with open(image_file, 'rb') as f:
np_arr = np.frombuffer(f.read(), dtype=np.uint8)
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if det and rec:
dt_boxes, rec_res = self.__call__(img, cls)
return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
elif det and not rec:
dt_boxes, elapse = self.text_detector(img)
if dt_boxes is None:
return None
return [box.tolist() for box in dt_boxes]
else:
if not isinstance(img, list):
img = [img]
if self.use_angle_cls and cls:
img, cls_res, elapse = self.text_classifier(img)
if not rec:
return cls_res
rec_res, elapse = self.text_recognizer(img)
return rec_res
class PPStructure(OCRSystem):
def __init__(self, **kwargs):
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
if not params.show_log:
logger.setLevel(logging.INFO)
lang, det_lang = parse_lang(params.lang)
# init model dir
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'det', det_lang),
model_urls['det'][det_lang])
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'rec', lang),
model_urls['rec'][lang]['url'])
params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'table'),
model_urls['table']['url'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.table_model_dir, table_url)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(Path(__file__).parent / model_urls['rec'][lang]['dict_path'])
if params.table_char_dict_path is None:
params.table_char_dict_path = str(Path(__file__).parent / model_urls['table']['dict_path'])
print(params)
super().__init__(params)
def __call__(self, img):
if isinstance(img, str):
# download net image
if img.startswith('http'):
download_with_progressbar(img, 'tmp.jpg')
img = 'tmp.jpg'
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
with open(image_file, 'rb') as f:
np_arr = np.frombuffer(f.read(), dtype=np.uint8)
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
res = super().__call__(img)
return res
def main():
# for cmd
args = parse_args(mMain=True)
image_dir = args.image_dir
if is_link(image_dir):
download_with_progressbar(image_dir, 'tmp.jpg')
image_file_list = ['tmp.jpg']
else:
image_file_list = get_image_file_list(args.image_dir)
if len(image_file_list) == 0:
logger.error('no images find in {}'.format(args.image_dir))
return
if args.type == 'ocr':
engine = PaddleOCR(**(args.__dict__))
elif args.type == 'structure':
engine = PPStructure(**(args.__dict__))
else:
raise NotImplementedError
for img_path in image_file_list:
img_name = os.path.basename(img_path).split('.')[0]
logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
if args.type == 'ocr':
result = engine.ocr(img_path,
det=args.det,
rec=args.rec,
cls=args.use_angle_cls)
if result is not None:
for line in result:
logger.info(line)
elif args.type == 'structure':
result = engine(img_path)
save_structure_res(result, args.output, img_name)
for item in result:
item.pop('img')
logger.info(item)