158 lines
5.6 KiB
Python
158 lines
5.6 KiB
Python
# -*- coding:utf-8 -*-
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import cv2
|
|
|
|
np.seterr(divide='ignore', invalid='ignore')
|
|
import pyclipper
|
|
from shapely.geometry import Polygon
|
|
import sys
|
|
import warnings
|
|
|
|
warnings.simplefilter("ignore")
|
|
|
|
__all__ = ['MakeBorderMap']
|
|
|
|
|
|
class MakeBorderMap(object):
|
|
def __init__(self,
|
|
shrink_ratio=0.4,
|
|
thresh_min=0.3,
|
|
thresh_max=0.7,
|
|
**kwargs):
|
|
self.shrink_ratio = shrink_ratio
|
|
self.thresh_min = thresh_min
|
|
self.thresh_max = thresh_max
|
|
|
|
def __call__(self, data):
|
|
|
|
img = data['image']
|
|
text_polys = data['polys']
|
|
ignore_tags = data['ignore_tags']
|
|
|
|
canvas = np.zeros(img.shape[:2], dtype=np.float32)
|
|
mask = np.zeros(img.shape[:2], dtype=np.float32)
|
|
|
|
for i in range(len(text_polys)):
|
|
if ignore_tags[i]:
|
|
continue
|
|
self.draw_border_map(text_polys[i], canvas, mask=mask)
|
|
canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min
|
|
|
|
data['threshold_map'] = canvas
|
|
data['threshold_mask'] = mask
|
|
return data
|
|
|
|
def draw_border_map(self, polygon, canvas, mask):
|
|
polygon = np.array(polygon)
|
|
assert polygon.ndim == 2
|
|
assert polygon.shape[1] == 2
|
|
|
|
polygon_shape = Polygon(polygon)
|
|
if polygon_shape.area <= 0:
|
|
return
|
|
distance = polygon_shape.area * (
|
|
1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
|
|
subject = [tuple(l) for l in polygon]
|
|
padding = pyclipper.PyclipperOffset()
|
|
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
|
|
padded_polygon = np.array(padding.Execute(distance)[0])
|
|
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
|
|
|
|
xmin = padded_polygon[:, 0].min()
|
|
xmax = padded_polygon[:, 0].max()
|
|
ymin = padded_polygon[:, 1].min()
|
|
ymax = padded_polygon[:, 1].max()
|
|
width = xmax - xmin + 1
|
|
height = ymax - ymin + 1
|
|
|
|
polygon[:, 0] = polygon[:, 0] - xmin
|
|
polygon[:, 1] = polygon[:, 1] - ymin
|
|
|
|
xs = np.broadcast_to(
|
|
np.linspace(
|
|
0, width - 1, num=width).reshape(1, width), (height, width))
|
|
ys = np.broadcast_to(
|
|
np.linspace(
|
|
0, height - 1, num=height).reshape(height, 1), (height, width))
|
|
|
|
distance_map = np.zeros(
|
|
(polygon.shape[0], height, width), dtype=np.float32)
|
|
for i in range(polygon.shape[0]):
|
|
j = (i + 1) % polygon.shape[0]
|
|
absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
|
|
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
|
|
distance_map = distance_map.min(axis=0)
|
|
|
|
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
|
|
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
|
|
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
|
|
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
|
|
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
|
|
1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
|
|
xmin_valid - xmin:xmax_valid - xmax + width],
|
|
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
|
|
|
|
def _distance(self, xs, ys, point_1, point_2):
|
|
'''
|
|
compute the distance from point to a line
|
|
ys: coordinates in the first axis
|
|
xs: coordinates in the second axis
|
|
point_1, point_2: (x, y), the end of the line
|
|
'''
|
|
height, width = xs.shape[:2]
|
|
square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[
|
|
1])
|
|
square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[
|
|
1])
|
|
square_distance = np.square(point_1[0] - point_2[0]) + np.square(
|
|
point_1[1] - point_2[1])
|
|
|
|
cosin = (square_distance - square_distance_1 - square_distance_2) / (
|
|
2 * np.sqrt(square_distance_1 * square_distance_2))
|
|
square_sin = 1 - np.square(cosin)
|
|
square_sin = np.nan_to_num(square_sin)
|
|
result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
|
|
square_distance)
|
|
|
|
result[cosin <
|
|
0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin
|
|
< 0]
|
|
# self.extend_line(point_1, point_2, result)
|
|
return result
|
|
|
|
def extend_line(self, point_1, point_2, result, shrink_ratio):
|
|
ex_point_1 = (int(
|
|
round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
|
|
int(
|
|
round(point_1[1] + (point_1[1] - point_2[1]) * (
|
|
1 + shrink_ratio))))
|
|
cv2.line(
|
|
result,
|
|
tuple(ex_point_1),
|
|
tuple(point_1),
|
|
4096.0,
|
|
1,
|
|
lineType=cv2.LINE_AA,
|
|
shift=0)
|
|
ex_point_2 = (int(
|
|
round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
|
|
int(
|
|
round(point_2[1] + (point_2[1] - point_1[1]) * (
|
|
1 + shrink_ratio))))
|
|
cv2.line(
|
|
result,
|
|
tuple(ex_point_2),
|
|
tuple(point_2),
|
|
4096.0,
|
|
1,
|
|
lineType=cv2.LINE_AA,
|
|
shift=0)
|
|
return ex_point_1, ex_point_2
|