31 lines
1.1 KiB
Python
31 lines
1.1 KiB
Python
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
class NRTRLoss(nn.Layer):
|
|
def __init__(self, smoothing=True, **kwargs):
|
|
super(NRTRLoss, self).__init__()
|
|
self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0)
|
|
self.smoothing = smoothing
|
|
|
|
def forward(self, pred, batch):
|
|
pred = pred.reshape([-1, pred.shape[2]])
|
|
max_len = batch[2].max()
|
|
tgt = batch[1][:, 1:2 + max_len]
|
|
tgt = tgt.reshape([-1])
|
|
if self.smoothing:
|
|
eps = 0.1
|
|
n_class = pred.shape[1]
|
|
one_hot = F.one_hot(tgt, pred.shape[1])
|
|
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
|
|
log_prb = F.log_softmax(pred, axis=1)
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(
|
|
tgt.shape, dtype='int64'))
|
|
loss = -(one_hot * log_prb).sum(axis=1)
|
|
loss = loss.masked_select(non_pad_mask).mean()
|
|
else:
|
|
loss = self.loss_func(pred, tgt)
|
|
return {'loss': loss}
|