61 lines
2.3 KiB
Python
61 lines
2.3 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from paddle import nn
|
|
from ppocr.modeling.transforms import build_transform
|
|
from ppocr.modeling.backbones import build_backbone
|
|
from ppocr.modeling.necks import build_neck
|
|
from ppocr.modeling.heads import build_head
|
|
from .base_model import BaseModel
|
|
from ppocr.utils.save_load import init_model, load_pretrained_params
|
|
|
|
__all__ = ['DistillationModel']
|
|
|
|
|
|
class DistillationModel(nn.Layer):
|
|
def __init__(self, config):
|
|
"""
|
|
the module for OCR distillation.
|
|
args:
|
|
config (dict): the super parameters for module.
|
|
"""
|
|
super().__init__()
|
|
self.model_list = []
|
|
self.model_name_list = []
|
|
for key in config["Models"]:
|
|
model_config = config["Models"][key]
|
|
freeze_params = False
|
|
pretrained = None
|
|
if "freeze_params" in model_config:
|
|
freeze_params = model_config.pop("freeze_params")
|
|
if "pretrained" in model_config:
|
|
pretrained = model_config.pop("pretrained")
|
|
model = BaseModel(model_config)
|
|
if pretrained is not None:
|
|
load_pretrained_params(model, pretrained)
|
|
if freeze_params:
|
|
for param in model.parameters():
|
|
param.trainable = False
|
|
self.model_list.append(self.add_sublayer(key, model))
|
|
self.model_name_list.append(key)
|
|
|
|
def forward(self, x):
|
|
result_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
result_dict[model_name] = self.model_list[idx](x)
|
|
return result_dict
|