122 lines
3.6 KiB
Python
122 lines
3.6 KiB
Python
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups=1,
|
|
if_act=True,
|
|
act=None,
|
|
name=None):
|
|
super(ConvBNLayer, self).__init__()
|
|
self.if_act = if_act
|
|
self.act = act
|
|
self.conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(name=name + '_weights'),
|
|
bias_attr=False)
|
|
|
|
self.bn = nn.BatchNorm(
|
|
num_channels=out_channels,
|
|
act=act,
|
|
param_attr=ParamAttr(name="bn_" + name + "_scale"),
|
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
|
|
moving_mean_name="bn_" + name + "_mean",
|
|
moving_variance_name="bn_" + name + "_variance")
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class EASTHead(nn.Layer):
|
|
"""
|
|
"""
|
|
def __init__(self, in_channels, model_name, **kwargs):
|
|
super(EASTHead, self).__init__()
|
|
self.model_name = model_name
|
|
if self.model_name == "large":
|
|
num_outputs = [128, 64, 1, 8]
|
|
else:
|
|
num_outputs = [64, 32, 1, 8]
|
|
|
|
self.det_conv1 = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=num_outputs[0],
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="det_head1")
|
|
self.det_conv2 = ConvBNLayer(
|
|
in_channels=num_outputs[0],
|
|
out_channels=num_outputs[1],
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
if_act=True,
|
|
act='relu',
|
|
name="det_head2")
|
|
self.score_conv = ConvBNLayer(
|
|
in_channels=num_outputs[1],
|
|
out_channels=num_outputs[2],
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
if_act=False,
|
|
act=None,
|
|
name="f_score")
|
|
self.geo_conv = ConvBNLayer(
|
|
in_channels=num_outputs[1],
|
|
out_channels=num_outputs[3],
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
if_act=False,
|
|
act=None,
|
|
name="f_geo")
|
|
|
|
def forward(self, x, targets=None):
|
|
f_det = self.det_conv1(x)
|
|
f_det = self.det_conv2(f_det)
|
|
f_score = self.score_conv(f_det)
|
|
f_score = F.sigmoid(f_score)
|
|
f_geo = self.geo_conv(f_det)
|
|
f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800
|
|
|
|
pred = {'f_score': f_score, 'f_geo': f_geo}
|
|
return pred
|