389 lines
15 KiB
Python
389 lines
15 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
|
|
|
|
class AsterHead(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
sDim,
|
|
attDim,
|
|
max_len_labels,
|
|
time_step=25,
|
|
beam_width=5,
|
|
**kwargs):
|
|
super(AsterHead, self).__init__()
|
|
self.num_classes = out_channels
|
|
self.in_planes = in_channels
|
|
self.sDim = sDim
|
|
self.attDim = attDim
|
|
self.max_len_labels = max_len_labels
|
|
self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
|
|
attDim, max_len_labels)
|
|
self.time_step = time_step
|
|
self.embeder = Embedding(self.time_step, in_channels)
|
|
self.beam_width = beam_width
|
|
self.eos = self.num_classes - 1
|
|
|
|
def forward(self, x, targets=None, embed=None):
|
|
return_dict = {}
|
|
embedding_vectors = self.embeder(x)
|
|
|
|
if self.training:
|
|
rec_targets, rec_lengths, _ = targets
|
|
rec_pred = self.decoder([x, rec_targets, rec_lengths],
|
|
embedding_vectors)
|
|
return_dict['rec_pred'] = rec_pred
|
|
return_dict['embedding_vectors'] = embedding_vectors
|
|
else:
|
|
rec_pred, rec_pred_scores = self.decoder.beam_search(
|
|
x, self.beam_width, self.eos, embedding_vectors)
|
|
return_dict['rec_pred'] = rec_pred
|
|
return_dict['rec_pred_scores'] = rec_pred_scores
|
|
return_dict['embedding_vectors'] = embedding_vectors
|
|
|
|
return return_dict
|
|
|
|
|
|
class Embedding(nn.Layer):
|
|
def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
|
|
super(Embedding, self).__init__()
|
|
self.in_timestep = in_timestep
|
|
self.in_planes = in_planes
|
|
self.embed_dim = embed_dim
|
|
self.mid_dim = mid_dim
|
|
self.eEmbed = nn.Linear(
|
|
in_timestep * in_planes,
|
|
self.embed_dim) # Embed encoder output to a word-embedding like
|
|
|
|
def forward(self, x):
|
|
x = paddle.reshape(x, [paddle.shape(x)[0], -1])
|
|
x = self.eEmbed(x)
|
|
return x
|
|
|
|
|
|
class AttentionRecognitionHead(nn.Layer):
|
|
"""
|
|
input: [b x 16 x 64 x in_planes]
|
|
output: probability sequence: [b x T x num_classes]
|
|
"""
|
|
|
|
def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
|
|
super(AttentionRecognitionHead, self).__init__()
|
|
self.num_classes = out_channels # this is the output classes. So it includes the <EOS>.
|
|
self.in_planes = in_channels
|
|
self.sDim = sDim
|
|
self.attDim = attDim
|
|
self.max_len_labels = max_len_labels
|
|
|
|
self.decoder = DecoderUnit(
|
|
sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)
|
|
|
|
def forward(self, x, embed):
|
|
x, targets, lengths = x
|
|
batch_size = paddle.shape(x)[0]
|
|
# Decoder
|
|
state = self.decoder.get_initial_state(embed)
|
|
outputs = []
|
|
for i in range(max(lengths)):
|
|
if i == 0:
|
|
y_prev = paddle.full(
|
|
shape=[batch_size], fill_value=self.num_classes)
|
|
else:
|
|
y_prev = targets[:, i - 1]
|
|
output, state = self.decoder(x, state, y_prev)
|
|
outputs.append(output)
|
|
outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
|
|
return outputs
|
|
|
|
# inference stage.
|
|
def sample(self, x):
|
|
x, _, _ = x
|
|
batch_size = x.size(0)
|
|
# Decoder
|
|
state = paddle.zeros([1, batch_size, self.sDim])
|
|
|
|
predicted_ids, predicted_scores = [], []
|
|
for i in range(self.max_len_labels):
|
|
if i == 0:
|
|
y_prev = paddle.full(
|
|
shape=[batch_size], fill_value=self.num_classes)
|
|
else:
|
|
y_prev = predicted
|
|
|
|
output, state = self.decoder(x, state, y_prev)
|
|
output = F.softmax(output, axis=1)
|
|
score, predicted = output.max(1)
|
|
predicted_ids.append(predicted.unsqueeze(1))
|
|
predicted_scores.append(score.unsqueeze(1))
|
|
predicted_ids = paddle.concat([predicted_ids, 1])
|
|
predicted_scores = paddle.concat([predicted_scores, 1])
|
|
# return predicted_ids.squeeze(), predicted_scores.squeeze()
|
|
return predicted_ids, predicted_scores
|
|
|
|
def beam_search(self, x, beam_width, eos, embed):
|
|
def _inflate(tensor, times, dim):
|
|
repeat_dims = [1] * tensor.dim()
|
|
repeat_dims[dim] = times
|
|
output = paddle.tile(tensor, repeat_dims)
|
|
return output
|
|
|
|
# https://github.com/IBM/pytorch-seq2seq/blob/fede87655ddce6c94b38886089e05321dc9802af/seq2seq/models/TopKDecoder.py
|
|
batch_size, l, d = x.shape
|
|
x = paddle.tile(
|
|
paddle.transpose(
|
|
x.unsqueeze(1), perm=[1, 0, 2, 3]), [beam_width, 1, 1, 1])
|
|
inflated_encoder_feats = paddle.reshape(
|
|
paddle.transpose(
|
|
x, perm=[1, 0, 2, 3]), [-1, l, d])
|
|
|
|
# Initialize the decoder
|
|
state = self.decoder.get_initial_state(embed, tile_times=beam_width)
|
|
|
|
pos_index = paddle.reshape(
|
|
paddle.arange(batch_size) * beam_width, shape=[-1, 1])
|
|
|
|
# Initialize the scores
|
|
sequence_scores = paddle.full(
|
|
shape=[batch_size * beam_width, 1], fill_value=-float('Inf'))
|
|
index = [i * beam_width for i in range(0, batch_size)]
|
|
sequence_scores[index] = 0.0
|
|
|
|
# Initialize the input vector
|
|
y_prev = paddle.full(
|
|
shape=[batch_size * beam_width], fill_value=self.num_classes)
|
|
|
|
# Store decisions for backtracking
|
|
stored_scores = list()
|
|
stored_predecessors = list()
|
|
stored_emitted_symbols = list()
|
|
|
|
for i in range(self.max_len_labels):
|
|
output, state = self.decoder(inflated_encoder_feats, state, y_prev)
|
|
state = paddle.unsqueeze(state, axis=0)
|
|
log_softmax_output = paddle.nn.functional.log_softmax(
|
|
output, axis=1)
|
|
|
|
sequence_scores = _inflate(sequence_scores, self.num_classes, 1)
|
|
sequence_scores += log_softmax_output
|
|
scores, candidates = paddle.topk(
|
|
paddle.reshape(sequence_scores, [batch_size, -1]),
|
|
beam_width,
|
|
axis=1)
|
|
|
|
# Reshape input = (bk, 1) and sequence_scores = (bk, 1)
|
|
y_prev = paddle.reshape(
|
|
candidates % self.num_classes, shape=[batch_size * beam_width])
|
|
sequence_scores = paddle.reshape(
|
|
scores, shape=[batch_size * beam_width, 1])
|
|
|
|
# Update fields for next timestep
|
|
pos_index = paddle.expand_as(pos_index, candidates)
|
|
predecessors = paddle.cast(
|
|
candidates / self.num_classes + pos_index, dtype='int64')
|
|
predecessors = paddle.reshape(
|
|
predecessors, shape=[batch_size * beam_width, 1])
|
|
state = paddle.index_select(
|
|
state, index=predecessors.squeeze(), axis=1)
|
|
|
|
# Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
|
|
stored_scores.append(sequence_scores.clone())
|
|
y_prev = paddle.reshape(y_prev, shape=[-1, 1])
|
|
eos_prev = paddle.full_like(y_prev, fill_value=eos)
|
|
mask = eos_prev == y_prev
|
|
mask = paddle.nonzero(mask)
|
|
if mask.dim() > 0:
|
|
sequence_scores = sequence_scores.numpy()
|
|
mask = mask.numpy()
|
|
sequence_scores[mask] = -float('inf')
|
|
sequence_scores = paddle.to_tensor(sequence_scores)
|
|
|
|
# Cache results for backtracking
|
|
stored_predecessors.append(predecessors)
|
|
y_prev = paddle.squeeze(y_prev)
|
|
stored_emitted_symbols.append(y_prev)
|
|
|
|
# Do backtracking to return the optimal values
|
|
#====== backtrak ======#
|
|
# Initialize return variables given different types
|
|
p = list()
|
|
l = [[self.max_len_labels] * beam_width for _ in range(batch_size)
|
|
] # Placeholder for lengths of top-k sequences
|
|
|
|
# the last step output of the beams are not sorted
|
|
# thus they are sorted here
|
|
sorted_score, sorted_idx = paddle.topk(
|
|
paddle.reshape(
|
|
stored_scores[-1], shape=[batch_size, beam_width]),
|
|
beam_width)
|
|
|
|
# initialize the sequence scores with the sorted last step beam scores
|
|
s = sorted_score.clone()
|
|
|
|
batch_eos_found = [0] * batch_size # the number of EOS found
|
|
# in the backward loop below for each batch
|
|
t = self.max_len_labels - 1
|
|
# initialize the back pointer with the sorted order of the last step beams.
|
|
# add pos_index for indexing variable with b*k as the first dimension.
|
|
t_predecessors = paddle.reshape(
|
|
sorted_idx + pos_index.expand_as(sorted_idx),
|
|
shape=[batch_size * beam_width])
|
|
while t >= 0:
|
|
# Re-order the variables with the back pointer
|
|
current_symbol = paddle.index_select(
|
|
stored_emitted_symbols[t], index=t_predecessors, axis=0)
|
|
t_predecessors = paddle.index_select(
|
|
stored_predecessors[t].squeeze(), index=t_predecessors, axis=0)
|
|
eos_indices = stored_emitted_symbols[t] == eos
|
|
eos_indices = paddle.nonzero(eos_indices)
|
|
|
|
if eos_indices.dim() > 0:
|
|
for i in range(eos_indices.shape[0] - 1, -1, -1):
|
|
# Indices of the EOS symbol for both variables
|
|
# with b*k as the first dimension, and b, k for
|
|
# the first two dimensions
|
|
idx = eos_indices[i]
|
|
b_idx = int(idx[0] / beam_width)
|
|
# The indices of the replacing position
|
|
# according to the replacement strategy noted above
|
|
res_k_idx = beam_width - (batch_eos_found[b_idx] %
|
|
beam_width) - 1
|
|
batch_eos_found[b_idx] += 1
|
|
res_idx = b_idx * beam_width + res_k_idx
|
|
|
|
# Replace the old information in return variables
|
|
# with the new ended sequence information
|
|
t_predecessors[res_idx] = stored_predecessors[t][idx[0]]
|
|
current_symbol[res_idx] = stored_emitted_symbols[t][idx[0]]
|
|
s[b_idx, res_k_idx] = stored_scores[t][idx[0], 0]
|
|
l[b_idx][res_k_idx] = t + 1
|
|
|
|
# record the back tracked results
|
|
p.append(current_symbol)
|
|
t -= 1
|
|
|
|
# Sort and re-order again as the added ended sequences may change
|
|
# the order (very unlikely)
|
|
s, re_sorted_idx = s.topk(beam_width)
|
|
for b_idx in range(batch_size):
|
|
l[b_idx] = [
|
|
l[b_idx][k_idx.item()] for k_idx in re_sorted_idx[b_idx, :]
|
|
]
|
|
|
|
re_sorted_idx = paddle.reshape(
|
|
re_sorted_idx + pos_index.expand_as(re_sorted_idx),
|
|
[batch_size * beam_width])
|
|
|
|
# Reverse the sequences and re-order at the same time
|
|
# It is reversed because the backtracking happens in reverse time order
|
|
p = [
|
|
paddle.reshape(
|
|
paddle.index_select(step, re_sorted_idx, 0),
|
|
shape=[batch_size, beam_width, -1]) for step in reversed(p)
|
|
]
|
|
p = paddle.concat(p, -1)[:, 0, :]
|
|
return p, paddle.ones_like(p)
|
|
|
|
|
|
class AttentionUnit(nn.Layer):
|
|
def __init__(self, sDim, xDim, attDim):
|
|
super(AttentionUnit, self).__init__()
|
|
|
|
self.sDim = sDim
|
|
self.xDim = xDim
|
|
self.attDim = attDim
|
|
|
|
self.sEmbed = nn.Linear(sDim, attDim)
|
|
self.xEmbed = nn.Linear(xDim, attDim)
|
|
self.wEmbed = nn.Linear(attDim, 1)
|
|
|
|
def forward(self, x, sPrev):
|
|
batch_size, T, _ = x.shape # [b x T x xDim]
|
|
x = paddle.reshape(x, [-1, self.xDim]) # [(b x T) x xDim]
|
|
xProj = self.xEmbed(x) # [(b x T) x attDim]
|
|
xProj = paddle.reshape(xProj, [batch_size, T, -1]) # [b x T x attDim]
|
|
|
|
sPrev = sPrev.squeeze(0)
|
|
sProj = self.sEmbed(sPrev) # [b x attDim]
|
|
sProj = paddle.unsqueeze(sProj, 1) # [b x 1 x attDim]
|
|
sProj = paddle.expand(sProj,
|
|
[batch_size, T, self.attDim]) # [b x T x attDim]
|
|
|
|
sumTanh = paddle.tanh(sProj + xProj)
|
|
sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])
|
|
|
|
vProj = self.wEmbed(sumTanh) # [(b x T) x 1]
|
|
vProj = paddle.reshape(vProj, [batch_size, T])
|
|
alpha = F.softmax(
|
|
vProj, axis=1) # attention weights for each sample in the minibatch
|
|
return alpha
|
|
|
|
|
|
class DecoderUnit(nn.Layer):
|
|
def __init__(self, sDim, xDim, yDim, attDim):
|
|
super(DecoderUnit, self).__init__()
|
|
self.sDim = sDim
|
|
self.xDim = xDim
|
|
self.yDim = yDim
|
|
self.attDim = attDim
|
|
self.emdDim = attDim
|
|
|
|
self.attention_unit = AttentionUnit(sDim, xDim, attDim)
|
|
self.tgt_embedding = nn.Embedding(
|
|
yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
|
|
std=0.01)) # the last is used for <BOS>
|
|
self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
|
|
self.fc = nn.Linear(
|
|
sDim,
|
|
yDim,
|
|
weight_attr=nn.initializer.Normal(std=0.01),
|
|
bias_attr=nn.initializer.Constant(value=0))
|
|
self.embed_fc = nn.Linear(300, self.sDim)
|
|
|
|
def get_initial_state(self, embed, tile_times=1):
|
|
assert embed.shape[1] == 300
|
|
state = self.embed_fc(embed) # N * sDim
|
|
if tile_times != 1:
|
|
state = state.unsqueeze(1)
|
|
trans_state = paddle.transpose(state, perm=[1, 0, 2])
|
|
state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
|
|
trans_state = paddle.transpose(state, perm=[1, 0, 2])
|
|
state = paddle.reshape(trans_state, shape=[-1, self.sDim])
|
|
state = state.unsqueeze(0) # 1 * N * sDim
|
|
return state
|
|
|
|
def forward(self, x, sPrev, yPrev):
|
|
# x: feature sequence from the image decoder.
|
|
batch_size, T, _ = x.shape
|
|
alpha = self.attention_unit(x, sPrev)
|
|
context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
|
|
yPrev = paddle.cast(yPrev, dtype="int64")
|
|
yProj = self.tgt_embedding(yPrev)
|
|
|
|
concat_context = paddle.concat([yProj, context], 1)
|
|
concat_context = paddle.squeeze(concat_context, 1)
|
|
sPrev = paddle.squeeze(sPrev, 0)
|
|
output, state = self.gru(concat_context, sPrev)
|
|
output = paddle.squeeze(output, axis=1)
|
|
output = self.fc(output)
|
|
return output, state |