113 lines
3.2 KiB
YAML
113 lines
3.2 KiB
YAML
Global:
|
|
use_gpu: True
|
|
epoch_num: 600
|
|
log_smooth_window: 20
|
|
print_batch_step: 10
|
|
save_model_dir: ./output/pg_r50_vd_tt/
|
|
save_epoch_step: 10
|
|
# evaluation is run every 0 iterationss after the 1000th iteration
|
|
eval_batch_step: [ 0, 1000 ]
|
|
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
|
# from static branch, load_static_weights must be set as True.
|
|
# 2. If you want to finetune the pretrained models we provide in the docs,
|
|
# you should set load_static_weights as False.
|
|
load_static_weights: True
|
|
cal_metric_during_train: False
|
|
pretrained_model:
|
|
checkpoints:
|
|
save_inference_dir:
|
|
use_visualdl: False
|
|
infer_img:
|
|
save_res_path: ./output/pg_r50_vd_tt/predicts_pg.txt
|
|
|
|
Architecture:
|
|
model_type: e2e
|
|
algorithm: PGNet
|
|
Transform:
|
|
Backbone:
|
|
name: ResNet
|
|
layers: 50
|
|
Neck:
|
|
name: PGFPN
|
|
model_name: large
|
|
Head:
|
|
name: PGHead
|
|
model_name: large
|
|
|
|
Loss:
|
|
name: PGLoss
|
|
|
|
Optimizer:
|
|
name: Adam
|
|
beta1: 0.9
|
|
beta2: 0.999
|
|
lr:
|
|
learning_rate: 0.001
|
|
regularizer:
|
|
name: 'L2'
|
|
factor: 0
|
|
|
|
|
|
PostProcess:
|
|
name: PGPostProcess
|
|
score_thresh: 0.8
|
|
cover_thresh: 0.1
|
|
nms_thresh: 0.2
|
|
|
|
Metric:
|
|
name: E2EMetric
|
|
Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
|
|
main_indicator: f_score_e2e
|
|
|
|
Train:
|
|
dataset:
|
|
name: PGDateSet
|
|
label_file_list: [./train_data/total_text/train/]
|
|
ratio_list: [1.0]
|
|
data_format: icdar
|
|
transforms:
|
|
- DecodeImage: # load image
|
|
img_mode: BGR
|
|
channel_first: False
|
|
- PGProcessTrain:
|
|
batch_size: 14
|
|
min_crop_size: 24
|
|
min_text_size: 4
|
|
max_text_size: 512
|
|
Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
|
|
- KeepKeys:
|
|
keep_keys: [ 'images', 'tcl_maps', 'tcl_label_maps', 'border_maps','direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask' ] # dataloader will return list in this order
|
|
loader:
|
|
shuffle: True
|
|
drop_last: True
|
|
batch_size_per_card: 14
|
|
num_workers: 16
|
|
|
|
Eval:
|
|
dataset:
|
|
name: PGDataSet
|
|
data_dir: ./train_data/
|
|
label_file_list: [./train_data/total_text/test/]
|
|
transforms:
|
|
- DecodeImage: # load image
|
|
img_mode: BGR
|
|
channel_first: False
|
|
- E2ELabelEncode:
|
|
Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
|
|
max_len: 50
|
|
- E2EResizeForTest:
|
|
valid_set: totaltext
|
|
max_side_len: 768
|
|
- NormalizeImage:
|
|
scale: 1./255.
|
|
mean: [ 0.485, 0.456, 0.406 ]
|
|
std: [ 0.229, 0.224, 0.225 ]
|
|
order: 'hwc'
|
|
- ToCHWImage:
|
|
- KeepKeys:
|
|
keep_keys: [ 'image', 'shape', 'polys', 'strs', 'tags' ]
|
|
loader:
|
|
shuffle: False
|
|
drop_last: False
|
|
batch_size_per_card: 1 # must be 1
|
|
num_workers: 2 |