180 lines
7.4 KiB
Python
Executable File
180 lines
7.4 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import os
|
||
import sys
|
||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
sys.path.append(__dir__)
|
||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||
|
||
import tools.infer.utility as utility
|
||
from ppocr.utils.utility import initial_logger
|
||
logger = initial_logger()
|
||
from ppocr.utils.utility import get_image_file_list
|
||
import cv2
|
||
import copy
|
||
import numpy as np
|
||
import math
|
||
import time
|
||
from ppocr.utils.character import CharacterOps
|
||
|
||
|
||
class TextRecognizer(object):
|
||
def __init__(self, args):
|
||
self.predictor, self.input_tensor, self.output_tensors =\
|
||
utility.create_predictor(args, mode="rec")
|
||
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||
self.character_type = args.rec_char_type
|
||
self.rec_batch_num = args.rec_batch_num
|
||
self.rec_algorithm = args.rec_algorithm
|
||
char_ops_params = {
|
||
"character_type": args.rec_char_type,
|
||
"character_dict_path": args.rec_char_dict_path
|
||
}
|
||
if self.rec_algorithm != "RARE":
|
||
char_ops_params['loss_type'] = 'ctc'
|
||
self.loss_type = 'ctc'
|
||
else:
|
||
char_ops_params['loss_type'] = 'attention'
|
||
self.loss_type = 'attention'
|
||
self.char_ops = CharacterOps(char_ops_params)
|
||
|
||
def resize_norm_img(self, img, max_wh_ratio):
|
||
imgC, imgH, imgW = self.rec_image_shape
|
||
assert imgC == img.shape[2]
|
||
if self.character_type == "ch":
|
||
imgW = int((32 * max_wh_ratio))
|
||
h, w = img.shape[:2]
|
||
ratio = w / float(h)
|
||
if math.ceil(imgH * ratio) > imgW:
|
||
resized_w = imgW
|
||
else:
|
||
resized_w = int(math.ceil(imgH * ratio))
|
||
resized_image = cv2.resize(img, (resized_w, imgH))
|
||
resized_image = resized_image.astype('float32')
|
||
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
||
resized_image -= 0.5
|
||
resized_image /= 0.5
|
||
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
||
padding_im[:, :, 0:resized_w] = resized_image
|
||
return padding_im
|
||
|
||
def __call__(self, img_list):
|
||
img_num = len(img_list)
|
||
# Calculate the aspect ratio of all text bars
|
||
width_list = []
|
||
for img in img_list:
|
||
width_list.append(img.shape[1] / float(img.shape[0]))
|
||
# Sorting can speed up the recognition process
|
||
indices = np.argsort(np.array(width_list))
|
||
|
||
# rec_res = []
|
||
rec_res = [['', 0.0]] * img_num
|
||
batch_num = self.rec_batch_num
|
||
predict_time = 0
|
||
for beg_img_no in range(0, img_num, batch_num):
|
||
end_img_no = min(img_num, beg_img_no + batch_num)
|
||
norm_img_batch = []
|
||
max_wh_ratio = 0
|
||
for ino in range(beg_img_no, end_img_no):
|
||
# h, w = img_list[ino].shape[0:2]
|
||
h, w = img_list[indices[ino]].shape[0:2]
|
||
wh_ratio = w * 1.0 / h
|
||
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||
for ino in range(beg_img_no, end_img_no):
|
||
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
||
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
||
max_wh_ratio)
|
||
norm_img = norm_img[np.newaxis, :]
|
||
norm_img_batch.append(norm_img)
|
||
norm_img_batch = np.concatenate(norm_img_batch)
|
||
norm_img_batch = norm_img_batch.copy()
|
||
starttime = time.time()
|
||
self.input_tensor.copy_from_cpu(norm_img_batch)
|
||
self.predictor.zero_copy_run()
|
||
|
||
if self.loss_type == "ctc":
|
||
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
||
rec_idx_lod = self.output_tensors[0].lod()[0]
|
||
predict_batch = self.output_tensors[1].copy_to_cpu()
|
||
predict_lod = self.output_tensors[1].lod()[0]
|
||
elapse = time.time() - starttime
|
||
predict_time += elapse
|
||
for rno in range(len(rec_idx_lod) - 1):
|
||
beg = rec_idx_lod[rno]
|
||
end = rec_idx_lod[rno + 1]
|
||
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
||
preds_text = self.char_ops.decode(rec_idx_tmp)
|
||
beg = predict_lod[rno]
|
||
end = predict_lod[rno + 1]
|
||
probs = predict_batch[beg:end, :]
|
||
ind = np.argmax(probs, axis=1)
|
||
blank = probs.shape[1]
|
||
valid_ind = np.where(ind != (blank - 1))[0]
|
||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||
if len(valid_ind) == 0:
|
||
continue
|
||
# rec_res.append([preds_text, score])
|
||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||
else:
|
||
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
||
predict_batch = self.output_tensors[1].copy_to_cpu()
|
||
elapse = time.time() - starttime
|
||
predict_time += elapse
|
||
for rno in range(len(rec_idx_batch)):
|
||
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
|
||
if len(end_pos) <= 1:
|
||
preds = rec_idx_batch[rno, 1:]
|
||
score = np.mean(predict_batch[rno, 1:])
|
||
else:
|
||
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
||
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
||
preds_text = self.char_ops.decode(preds)
|
||
# rec_res.append([preds_text, score])
|
||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||
|
||
return rec_res, predict_time
|
||
|
||
|
||
def main(args):
|
||
image_file_list = get_image_file_list(args.image_dir)
|
||
text_recognizer = TextRecognizer(args)
|
||
valid_image_file_list = []
|
||
img_list = []
|
||
for image_file in image_file_list:
|
||
img = cv2.imread(image_file, cv2.IMREAD_COLOR)
|
||
if img is None:
|
||
logger.info("error in loading image:{}".format(image_file))
|
||
continue
|
||
valid_image_file_list.append(image_file)
|
||
img_list.append(img)
|
||
try:
|
||
rec_res, predict_time = text_recognizer(img_list)
|
||
except Exception as e:
|
||
print(e)
|
||
logger.info(
|
||
"ERROR!!!! \n"
|
||
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
||
"If your model has tps module: "
|
||
"TPS does not support variable shape.\n"
|
||
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
||
exit()
|
||
for ino in range(len(img_list)):
|
||
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
||
print("Total predict time for %d images:%.3f" %
|
||
(len(img_list), predict_time))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main(utility.parse_args())
|