PaddleOCR/deploy/slim/quantization/quant_kl.py

147 lines
5.1 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import yaml
import paddle
import paddle.distributed as dist
paddle.seed(2)
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program
import paddleslim
from paddleslim.dygraph.quant import QAT
import numpy as np
dist.get_world_size()
class PACT(paddle.nn.Layer):
def __init__(self):
super(PACT, self).__init__()
alpha_attr = paddle.ParamAttr(
name=self.full_name() + ".pact",
initializer=paddle.nn.initializer.Constant(value=20),
learning_rate=1.0,
regularizer=paddle.regularizer.L2Decay(2e-5))
self.alpha = self.create_parameter(
shape=[1], attr=alpha_attr, dtype='float32')
def forward(self, x):
out_left = paddle.nn.functional.relu(x - self.alpha)
out_right = paddle.nn.functional.relu(-self.alpha - x)
x = x - out_left + out_right
return x
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
def sample_generator(loader):
def __reader__():
for indx, data in enumerate(loader):
images = np.array(data[0])
yield images
return __reader__
def main(config, device, logger, vdl_writer):
# init dist environment
if config['Global']['distributed']:
dist.init_parallel_env()
global_config = config['Global']
# build dataloader
config['Train']['loader']['num_workers'] = 0
train_dataloader = build_dataloader(config, 'Train', device, logger)
if config['Eval']:
config['Eval']['loader']['num_workers'] = 0
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
else:
valid_dataloader = None
paddle.enable_static()
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
if 'inference_model' in global_config.keys(): # , 'inference_model'):
inference_model_dir = global_config['inference_model']
else:
inference_model_dir = os.path.dirname(global_config['pretrained_model'])
if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
raise ValueError(
"Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
)
paddleslim.quant.quant_post_static(
executor=exe,
model_dir=inference_model_dir,
model_filename='inference.pdmodel',
params_filename='inference.pdiparams',
quantize_model_path=global_config['save_inference_dir'],
sample_generator=sample_generator(train_dataloader),
save_model_filename='inference.pdmodel',
save_params_filename='inference.pdiparams',
batch_size=1,
batch_nums=None)
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)