359 lines
20 KiB
Markdown
359 lines
20 KiB
Markdown
# paddleocr package使用说明
|
||
|
||
## 1 快速上手
|
||
|
||
### 1.1 安装whl包
|
||
|
||
pip安装
|
||
```bash
|
||
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
|
||
```
|
||
|
||
本地构建并安装
|
||
```bash
|
||
python3 setup.py bdist_wheel
|
||
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x是paddleocr的版本号
|
||
```
|
||
|
||
## 2 使用
|
||
### 2.1 代码使用
|
||
paddleocr whl包会自动下载ppocr轻量级模型作为默认模型,可以根据第3节**自定义模型**进行自定义更换。
|
||
|
||
* 检测+方向分类器+识别全流程
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
|
||
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
|
||
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs/11.jpg'
|
||
result = ocr.ocr(img_path, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
image = Image.open(img_path).convert('RGB')
|
||
boxes = [line[0] for line in result]
|
||
txts = [line[1][0] for line in result]
|
||
scores = [line[1][1] for line in result]
|
||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
结果是一个list,每个item包含了文本框,文字和识别置信度
|
||
```bash
|
||
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
|
||
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
|
||
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
|
||
......
|
||
```
|
||
结果可视化
|
||
|
||
<div align="center">
|
||
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
|
||
</div>
|
||
|
||
|
||
* 检测+识别
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
ocr = PaddleOCR() # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs/11.jpg'
|
||
result = ocr.ocr(img_path,cls=False)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
image = Image.open(img_path).convert('RGB')
|
||
boxes = [line[0] for line in result]
|
||
txts = [line[1][0] for line in result]
|
||
scores = [line[1][1] for line in result]
|
||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
结果是一个list,每个item包含了文本框,文字和识别置信度
|
||
```bash
|
||
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
|
||
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
|
||
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
|
||
......
|
||
```
|
||
结果可视化
|
||
|
||
<div align="center">
|
||
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
|
||
</div>
|
||
|
||
|
||
* 方向分类器+识别
|
||
```python
|
||
from paddleocr import PaddleOCR
|
||
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
|
||
result = ocr.ocr(img_path, det=False, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
```
|
||
结果是一个list,每个item只包含识别结果和识别置信度
|
||
```bash
|
||
['韩国小馆', 0.9907421]
|
||
```
|
||
|
||
* 单独执行检测
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
ocr = PaddleOCR() # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs/11.jpg'
|
||
result = ocr.ocr(img_path, rec=False)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
|
||
image = Image.open(img_path).convert('RGB')
|
||
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
结果是一个list,每个item只包含文本框
|
||
```bash
|
||
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
|
||
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
|
||
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
|
||
......
|
||
```
|
||
结果可视化
|
||
|
||
|
||
<div align="center">
|
||
<img src="../imgs_results/whl/11_det.jpg" width="800">
|
||
</div>
|
||
|
||
* 单独执行识别
|
||
```python
|
||
from paddleocr import PaddleOCR
|
||
ocr = PaddleOCR() # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
|
||
result = ocr.ocr(img_path, det=False)
|
||
for line in result:
|
||
print(line)
|
||
```
|
||
结果是一个list,每个item只包含识别结果和识别置信度
|
||
```bash
|
||
['韩国小馆', 0.9907421]
|
||
```
|
||
|
||
* 单独执行方向分类器
|
||
```python
|
||
from paddleocr import PaddleOCR
|
||
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
|
||
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
```
|
||
结果是一个list,每个item只包含分类结果和分类置信度
|
||
```bash
|
||
['0', 0.9999924]
|
||
```
|
||
|
||
### 2.2 通过命令行使用
|
||
|
||
查看帮助信息
|
||
```bash
|
||
paddleocr -h
|
||
```
|
||
|
||
* 检测+方向分类器+识别全流程
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --use_angle_cls true
|
||
```
|
||
结果是一个list,每个item包含了文本框,文字和识别置信度
|
||
```bash
|
||
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
|
||
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
|
||
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
|
||
......
|
||
```
|
||
|
||
* 检测+识别
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
|
||
```
|
||
结果是一个list,每个item包含了文本框,文字和识别置信度
|
||
```bash
|
||
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
|
||
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
|
||
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
|
||
......
|
||
```
|
||
|
||
* 方向分类器+识别
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false
|
||
```
|
||
|
||
结果是一个list,每个item只包含识别结果和识别置信度
|
||
```bash
|
||
['韩国小馆', 0.9907421]
|
||
```
|
||
|
||
* 单独执行检测
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
|
||
```
|
||
结果是一个list,每个item只包含文本框
|
||
```bash
|
||
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
|
||
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
|
||
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
|
||
......
|
||
```
|
||
|
||
* 单独执行识别
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
|
||
```
|
||
|
||
结果是一个list,每个item只包含识别结果和识别置信度
|
||
```bash
|
||
['韩国小馆', 0.9907421]
|
||
```
|
||
|
||
* 单独执行方向分类器
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false --rec false
|
||
```
|
||
|
||
结果是一个list,每个item只包含分类结果和分类置信度
|
||
```bash
|
||
['0', 0.9999924]
|
||
```
|
||
|
||
## 3 自定义模型
|
||
当内置模型无法满足需求时,需要使用到自己训练的模型。
|
||
首先,参照[inference.md](./inference.md) 第一节转换将检测、分类和识别模型转换为inference模型,然后按照如下方式使用
|
||
|
||
### 3.1 代码使用
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
# 模型路径下必须含有model和params文件
|
||
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
|
||
img_path = 'PaddleOCR/doc/imgs/11.jpg'
|
||
result = ocr.ocr(img_path, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
image = Image.open(img_path).convert('RGB')
|
||
boxes = [line[0] for line in result]
|
||
txts = [line[1][0] for line in result]
|
||
scores = [line[1][1] for line in result]
|
||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
|
||
### 3.2 通过命令行使用
|
||
|
||
```bash
|
||
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true
|
||
```
|
||
|
||
## 4 使用网络图片或者numpy数组作为输入
|
||
|
||
### 4.1 网络图片
|
||
|
||
- 代码使用
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
|
||
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
|
||
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
|
||
img_path = 'http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg'
|
||
result = ocr.ocr(img_path, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
image = Image.open(img_path).convert('RGB')
|
||
boxes = [line[0] for line in result]
|
||
txts = [line[1][0] for line in result]
|
||
scores = [line[1][1] for line in result]
|
||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
- 命令行模式
|
||
```bash
|
||
paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg --use_angle_cls=true
|
||
```
|
||
|
||
### 4.2 numpy数组
|
||
仅通过代码使用时支持numpy数组作为输入
|
||
```python
|
||
from paddleocr import PaddleOCR, draw_ocr
|
||
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
|
||
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
|
||
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
|
||
img_path = 'PaddleOCR/doc/imgs/11.jpg'
|
||
img = cv2.imread(img_path)
|
||
# img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY), 如果你自己训练的模型支持灰度图,可以将这句话的注释取消
|
||
result = ocr.ocr(img, cls=True)
|
||
for line in result:
|
||
print(line)
|
||
|
||
# 显示结果
|
||
from PIL import Image
|
||
image = Image.open(img_path).convert('RGB')
|
||
boxes = [line[0] for line in result]
|
||
txts = [line[1][0] for line in result]
|
||
scores = [line[1][1] for line in result]
|
||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
|
||
im_show = Image.fromarray(im_show)
|
||
im_show.save('result.jpg')
|
||
```
|
||
|
||
## 5 参数说明
|
||
|
||
| 字段 | 说明 | 默认值 |
|
||
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|
||
| use_gpu | 是否使用GPU | TRUE |
|
||
| gpu_mem | 初始化占用的GPU内存大小 | 8000M |
|
||
| image_dir | 通过命令行调用时执行预测的图片或文件夹路径 | |
|
||
| det_algorithm | 使用的检测算法类型 | DB |
|
||
| det_model_dir | 检测模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/det`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 | None |
|
||
| det_max_side_len | 检测算法前向时图片长边的最大尺寸,当长边超出这个值时会将长边resize到这个大小,短边等比例缩放 | 960 |
|
||
| det_db_thresh | DB模型输出预测图的二值化阈值 | 0.3 |
|
||
| det_db_box_thresh | DB模型输出框的阈值,低于此值的预测框会被丢弃 | 0.5 |
|
||
| det_db_unclip_ratio | DB模型输出框扩大的比例 | 2 |
|
||
| det_east_score_thresh | EAST模型输出预测图的二值化阈值 | 0.8 |
|
||
| det_east_cover_thresh | EAST模型输出框的阈值,低于此值的预测框会被丢弃 | 0.1 |
|
||
| det_east_nms_thresh | EAST模型输出框NMS的阈值 | 0.2 |
|
||
| rec_algorithm | 使用的识别算法类型 | CRNN |
|
||
| rec_model_dir | 识别模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/rec`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 | None |
|
||
| rec_image_shape | 识别算法的输入图片尺寸 | "3,32,320" |
|
||
| rec_char_type | 识别算法的字符类型,中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan) | ch |
|
||
| rec_batch_num | 进行识别时,同时前向的图片数 | 30 |
|
||
| max_text_length | 识别算法能识别的最大文字长度 | 25 |
|
||
| rec_char_dict_path | 识别模型字典路径,当rec_model_dir使用方式2传参时需要修改为自己的字典路径 | ./ppocr/utils/ppocr_keys_v1.txt |
|
||
| use_space_char | 是否识别空格 | TRUE |
|
||
| drop_score | 对输出按照分数(来自于识别模型)进行过滤,低于此分数的不返回 | 0.5 |
|
||
| use_angle_cls | 是否加载分类模型 | FALSE |
|
||
| cls_model_dir | 分类模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/cls`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 | None |
|
||
| cls_image_shape | 分类算法的输入图片尺寸 | "3, 48, 192" |
|
||
| label_list | 分类算法的标签列表 | ['0', '180'] |
|
||
| cls_batch_num | 进行分类时,同时前向的图片数 |30 |
|
||
| enable_mkldnn | 是否启用mkldnn | FALSE |
|
||
| use_zero_copy_run | 是否通过zero_copy_run的方式进行前向 | FALSE |
|
||
| lang | 模型语言类型,目前支持 目前支持中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan) | ch |
|
||
| det | 前向时使用启动检测 | TRUE |
|
||
| rec | 前向时是否启动识别 | TRUE |
|
||
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
|
||
| show_log | 是否打印det和rec等信息 | FALSE |
|