291 lines
10 KiB
Python
Executable File
291 lines
10 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import subprocess
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
|
|
|
import cv2
|
|
import copy
|
|
import numpy as np
|
|
import time
|
|
import logging
|
|
from PIL import Image
|
|
import tools.infer.utility as utility
|
|
import tools.infer.predict_rec as predict_rec
|
|
import tools.infer.predict_det as predict_det
|
|
import tools.infer.predict_cls as predict_cls
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
|
from ppocr.utils.logging import get_logger
|
|
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb
|
|
import tools.infer.benchmark_utils as benchmark_utils
|
|
logger = get_logger()
|
|
|
|
|
|
class TextSystem(object):
|
|
def __init__(self, args):
|
|
if not args.show_log:
|
|
logger.setLevel(logging.INFO)
|
|
|
|
self.text_detector = predict_det.TextDetector(args)
|
|
self.text_recognizer = predict_rec.TextRecognizer(args)
|
|
self.use_angle_cls = args.use_angle_cls
|
|
self.drop_score = args.drop_score
|
|
if self.use_angle_cls:
|
|
self.text_classifier = predict_cls.TextClassifier(args)
|
|
|
|
def get_rotate_crop_image(self, img, points):
|
|
'''
|
|
img_height, img_width = img.shape[0:2]
|
|
left = int(np.min(points[:, 0]))
|
|
right = int(np.max(points[:, 0]))
|
|
top = int(np.min(points[:, 1]))
|
|
bottom = int(np.max(points[:, 1]))
|
|
img_crop = img[top:bottom, left:right, :].copy()
|
|
points[:, 0] = points[:, 0] - left
|
|
points[:, 1] = points[:, 1] - top
|
|
'''
|
|
img_crop_width = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[1]),
|
|
np.linalg.norm(points[2] - points[3])))
|
|
img_crop_height = int(
|
|
max(
|
|
np.linalg.norm(points[0] - points[3]),
|
|
np.linalg.norm(points[1] - points[2])))
|
|
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
|
[img_crop_width, img_crop_height],
|
|
[0, img_crop_height]])
|
|
M = cv2.getPerspectiveTransform(points, pts_std)
|
|
dst_img = cv2.warpPerspective(
|
|
img,
|
|
M, (img_crop_width, img_crop_height),
|
|
borderMode=cv2.BORDER_REPLICATE,
|
|
flags=cv2.INTER_CUBIC)
|
|
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
|
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
|
dst_img = np.rot90(dst_img)
|
|
return dst_img
|
|
|
|
def print_draw_crop_rec_res(self, img_crop_list, rec_res):
|
|
bbox_num = len(img_crop_list)
|
|
for bno in range(bbox_num):
|
|
cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
|
|
logger.info(bno, rec_res[bno])
|
|
|
|
def __call__(self, img, cls=True):
|
|
ori_im = img.copy()
|
|
dt_boxes, elapse = self.text_detector(img)
|
|
|
|
logger.debug("dt_boxes num : {}, elapse : {}".format(
|
|
len(dt_boxes), elapse))
|
|
if dt_boxes is None:
|
|
return None, None
|
|
img_crop_list = []
|
|
|
|
dt_boxes = sorted_boxes(dt_boxes)
|
|
|
|
for bno in range(len(dt_boxes)):
|
|
tmp_box = copy.deepcopy(dt_boxes[bno])
|
|
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
|
img_crop_list.append(img_crop)
|
|
if self.use_angle_cls and cls:
|
|
img_crop_list, angle_list, elapse = self.text_classifier(
|
|
img_crop_list)
|
|
logger.debug("cls num : {}, elapse : {}".format(
|
|
len(img_crop_list), elapse))
|
|
|
|
rec_res, elapse = self.text_recognizer(img_crop_list)
|
|
logger.debug("rec_res num : {}, elapse : {}".format(
|
|
len(rec_res), elapse))
|
|
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
|
|
filter_boxes, filter_rec_res = [], []
|
|
for box, rec_reuslt in zip(dt_boxes, rec_res):
|
|
text, score = rec_reuslt
|
|
if score >= self.drop_score:
|
|
filter_boxes.append(box)
|
|
filter_rec_res.append(rec_reuslt)
|
|
return filter_boxes, filter_rec_res
|
|
|
|
|
|
def sorted_boxes(dt_boxes):
|
|
"""
|
|
Sort text boxes in order from top to bottom, left to right
|
|
args:
|
|
dt_boxes(array):detected text boxes with shape [4, 2]
|
|
return:
|
|
sorted boxes(array) with shape [4, 2]
|
|
"""
|
|
num_boxes = dt_boxes.shape[0]
|
|
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
|
|
_boxes = list(sorted_boxes)
|
|
|
|
for i in range(num_boxes - 1):
|
|
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
|
|
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
|
|
tmp = _boxes[i]
|
|
_boxes[i] = _boxes[i + 1]
|
|
_boxes[i + 1] = tmp
|
|
return _boxes
|
|
|
|
|
|
def main(args):
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
image_file_list = image_file_list[args.process_id::args.total_process_num]
|
|
text_sys = TextSystem(args)
|
|
is_visualize = True
|
|
font_path = args.vis_font_path
|
|
drop_score = args.drop_score
|
|
|
|
# warm up 10 times
|
|
if args.warmup:
|
|
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
|
|
for i in range(10):
|
|
res = text_sys(img)
|
|
|
|
total_time = 0
|
|
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
|
_st = time.time()
|
|
count = 0
|
|
for idx, image_file in enumerate(image_file_list):
|
|
|
|
img, flag = check_and_read_gif(image_file)
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
starttime = time.time()
|
|
dt_boxes, rec_res = text_sys(img)
|
|
elapse = time.time() - starttime
|
|
total_time += elapse
|
|
if args.benchmark and idx % 20 == 0:
|
|
cm, gm, gu = get_current_memory_mb(0)
|
|
cpu_mem += cm
|
|
gpu_mem += gm
|
|
gpu_util += gu
|
|
count += 1
|
|
|
|
logger.info(
|
|
str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
|
|
for text, score in rec_res:
|
|
logger.info("{}, {:.3f}".format(text, score))
|
|
|
|
if is_visualize:
|
|
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
boxes = dt_boxes
|
|
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
|
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
|
|
|
draw_img = draw_ocr_box_txt(
|
|
image,
|
|
boxes,
|
|
txts,
|
|
scores,
|
|
drop_score=drop_score,
|
|
font_path=font_path)
|
|
draw_img_save = "./inference_results/"
|
|
if not os.path.exists(draw_img_save):
|
|
os.makedirs(draw_img_save)
|
|
if flag:
|
|
image_file = image_file[:-3] + "png"
|
|
cv2.imwrite(
|
|
os.path.join(draw_img_save, os.path.basename(image_file)),
|
|
draw_img[:, :, ::-1])
|
|
logger.info("The visualized image saved in {}".format(
|
|
os.path.join(draw_img_save, os.path.basename(image_file))))
|
|
|
|
logger.info("The predict total time is {}".format(time.time() - _st))
|
|
logger.info("\nThe predict total time is {}".format(total_time))
|
|
|
|
img_num = text_sys.text_detector.det_times.img_num
|
|
if args.benchmark:
|
|
mems = {
|
|
'cpu_rss_mb': cpu_mem / count,
|
|
'gpu_rss_mb': gpu_mem / count,
|
|
'gpu_util': gpu_util * 100 / count
|
|
}
|
|
else:
|
|
mems = None
|
|
det_time_dict = text_sys.text_detector.det_times.report(average=True)
|
|
rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
|
|
det_model_name = args.det_model_dir
|
|
rec_model_name = args.rec_model_dir
|
|
|
|
# construct det log information
|
|
model_info = {
|
|
'model_name': args.det_model_dir.split('/')[-1],
|
|
'precision': args.precision
|
|
}
|
|
data_info = {
|
|
'batch_size': 1,
|
|
'shape': 'dynamic_shape',
|
|
'data_num': det_time_dict['img_num']
|
|
}
|
|
perf_info = {
|
|
'preprocess_time_s': det_time_dict['preprocess_time'],
|
|
'inference_time_s': det_time_dict['inference_time'],
|
|
'postprocess_time_s': det_time_dict['postprocess_time'],
|
|
'total_time_s': det_time_dict['total_time']
|
|
}
|
|
|
|
benchmark_log = benchmark_utils.PaddleInferBenchmark(
|
|
text_sys.text_detector.config, model_info, data_info, perf_info, mems,
|
|
args.save_log_path)
|
|
benchmark_log("Det")
|
|
|
|
# construct rec log information
|
|
model_info = {
|
|
'model_name': args.rec_model_dir.split('/')[-1],
|
|
'precision': args.precision
|
|
}
|
|
data_info = {
|
|
'batch_size': args.rec_batch_num,
|
|
'shape': 'dynamic_shape',
|
|
'data_num': rec_time_dict['img_num']
|
|
}
|
|
perf_info = {
|
|
'preprocess_time_s': rec_time_dict['preprocess_time'],
|
|
'inference_time_s': rec_time_dict['inference_time'],
|
|
'postprocess_time_s': rec_time_dict['postprocess_time'],
|
|
'total_time_s': rec_time_dict['total_time']
|
|
}
|
|
benchmark_log = benchmark_utils.PaddleInferBenchmark(
|
|
text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
|
|
args.save_log_path)
|
|
benchmark_log("Rec")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = utility.parse_args()
|
|
if args.use_mp:
|
|
p_list = []
|
|
total_process_num = args.total_process_num
|
|
for process_id in range(total_process_num):
|
|
cmd = [sys.executable, "-u"] + sys.argv + [
|
|
"--process_id={}".format(process_id),
|
|
"--use_mp={}".format(False)
|
|
]
|
|
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
|
|
p_list.append(p)
|
|
for p in p_list:
|
|
p.wait()
|
|
else:
|
|
main(args)
|