PaddleOCR/tools/program.py

354 lines
14 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import yaml
import os
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import paddle.fluid as fluid
import time
from ppocr.utils.stats import TrainingStats
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
from ppocr.utils.save_load import save_model
import numpy as np
from ppocr.utils.character import cal_predicts_accuracy
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.opt = self._parse_opt(args.opt)
return args
def _parse_opt(self, opts):
config = {}
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
config[k] = yaml.load(v, Loader=yaml.Loader)
return config
class AttrDict(dict):
"""Single level attribute dict, NOT recursive"""
def __init__(self, **kwargs):
super(AttrDict, self).__init__()
super(AttrDict, self).update(kwargs)
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError("object has no attribute '{}'".format(key))
global_config = AttrDict()
def load_config(file_path):
"""
Load config from yml/yaml file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
_, ext = os.path.splitext(file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
merge_config(yaml.load(open(file_path), Loader=yaml.Loader))
assert "reader_yml" in global_config['Global'],\
"absence reader_yml in global"
reader_file_path = global_config['Global']['reader_yml']
_, ext = os.path.splitext(reader_file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for reader"
merge_config(yaml.load(open(reader_file_path), Loader=yaml.Loader))
return global_config
def merge_config(config):
"""
Merge config into global config.
Args:
config (dict): Config to be merged.
Returns: global config
"""
for key, value in config.items():
if "." not in key:
if isinstance(value, dict) and key in global_config:
global_config[key].update(value)
else:
global_config[key] = value
else:
sub_keys = key.split('.')
assert (sub_keys[0] in global_config)
cur = global_config[sub_keys[0]]
for idx, sub_key in enumerate(sub_keys[1:]):
assert (sub_key in cur)
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else:
cur = cur[sub_key]
def check_gpu(use_gpu):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err = "Config use_gpu cannot be set as true while you are " \
"using paddlepaddle cpu version ! \nPlease try: \n" \
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
"\t2. Set use_gpu as false in config file to run " \
"model on CPU"
try:
if use_gpu and not fluid.is_compiled_with_cuda():
logger.error(err)
sys.exit(1)
except Exception as e:
pass
def build(config, main_prog, startup_prog, mode):
"""
Build a program using a model and an optimizer
1. create feeds
2. create a dataloader
3. create a model
4. create fetchs
5. create an optimizer
Args:
config(dict): config
main_prog(): main program
startup_prog(): startup program
is_train(bool): train or valid
Returns:
dataloader(): a bridge between the model and the data
fetchs(dict): dict of model outputs(included loss and measures)
"""
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
func_infor = config['Architecture']['function']
model = create_module(func_infor)(params=config)
dataloader, outputs = model(mode=mode)
fetch_name_list = list(outputs.keys())
fetch_varname_list = [outputs[v].name for v in fetch_name_list]
opt_loss_name = None
if mode == "train":
opt_loss = outputs['total_loss']
opt_params = config['Optimizer']
optimizer = create_module(opt_params['function'])(opt_params)
optimizer.minimize(opt_loss)
opt_loss_name = opt_loss.name
global_lr = optimizer._global_learning_rate()
global_lr.persistable = True
fetch_name_list.insert(0, "lr")
fetch_varname_list.insert(0, global_lr.name)
return (dataloader, fetch_name_list, fetch_varname_list, opt_loss_name)
def build_export(config, main_prog, startup_prog):
"""
"""
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
func_infor = config['Architecture']['function']
model = create_module(func_infor)(params=config)
image, outputs = model(mode='export')
fetches_var_name = sorted([name for name in outputs])
fetches_var = [outputs[name] for name in fetches_var_name]
feeded_var_names = [image.name]
target_vars = fetches_var
return feeded_var_names, target_vars, fetches_var_name
def create_multi_devices_program(program, loss_var_name):
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = True
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_iteration_per_drop_scope = 1
compile_program = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss_var_name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compile_program
def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
train_stats = TrainingStats(log_smooth_window,
train_info_dict['fetch_name_list'])
best_eval_hmean = -1
best_batch_id = 0
best_epoch = 0
train_loader = train_info_dict['reader']
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(
program=train_info_dict['compile_program'],
fetch_list=train_info_dict['fetch_varname_list'],
return_numpy=False)
stats = {}
for tno in range(len(train_outs)):
fetch_name = train_info_dict['fetch_name_list'][tno]
fetch_value = np.mean(np.array(train_outs[tno]))
stats[fetch_name] = fetch_value
t2 = time.time()
train_batch_elapse = t2 - t1
train_stats.update(stats)
if train_batch_id > 0 and train_batch_id \
% print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
epoch, train_batch_id, logs, train_batch_elapse)
logger.info(strs)
if train_batch_id > 0 and\
train_batch_id % eval_batch_step == 0:
metrics = eval_det_run(exe, config, eval_info_dict, "eval")
hmean = metrics['hmean']
if hmean >= best_eval_hmean:
best_eval_hmean = hmean
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_model_dir + "/best_accuracy"
save_model(train_info_dict['train_program'], save_path)
strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format(
train_batch_id, metrics, best_eval_hmean, best_epoch,
best_batch_id)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
save_model(train_info_dict['train_program'], save_path)
return
def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
best_eval_acc = -1
best_batch_id = 0
best_epoch = 0
train_loader = train_info_dict['reader']
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(
program=train_info_dict['compile_program'],
fetch_list=train_info_dict['fetch_varname_list'],
return_numpy=False)
fetch_map = dict(
zip(train_info_dict['fetch_name_list'],
range(len(train_outs))))
loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
lr = np.mean(np.array(train_outs[fetch_map['lr']]))
preds_idx = fetch_map['decoded_out']
preds = np.array(train_outs[preds_idx])
preds_lod = train_outs[preds_idx].lod()[0]
labels_idx = fetch_map['label']
labels = np.array(train_outs[labels_idx])
labels_lod = train_outs[labels_idx].lod()[0]
acc, acc_num, img_num = cal_predicts_accuracy(
config['Global']['char_ops'], preds, preds_lod, labels,
labels_lod)
t2 = time.time()
train_batch_elapse = t2 - t1
stats = {'loss': loss, 'acc': acc}
train_stats.update(stats)
if train_batch_id > 0 and train_batch_id \
% print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
epoch, train_batch_id, lr, logs, train_batch_elapse)
logger.info(strs)
if train_batch_id > 0 and\
train_batch_id % eval_batch_step == 0:
metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
eval_acc = metrics['avg_acc']
eval_sample_num = metrics['total_sample_num']
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_model_dir + "/best_accuracy"
save_model(train_info_dict['train_program'], save_path)
strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
train_batch_id, eval_acc, best_eval_acc, best_epoch,
best_batch_id, eval_sample_num)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
save_model(train_info_dict['train_program'], save_path)
return