111 lines
4.1 KiB
Python
111 lines
4.1 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
|
|
class TableFPN(nn.Layer):
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
|
super(TableFPN, self).__init__()
|
|
self.out_channels = 512
|
|
weight_attr = paddle.nn.initializer.KaimingUniform()
|
|
self.in2_conv = nn.Conv2D(
|
|
in_channels=in_channels[0],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.in3_conv = nn.Conv2D(
|
|
in_channels=in_channels[1],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
stride = 1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.in4_conv = nn.Conv2D(
|
|
in_channels=in_channels[2],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.in5_conv = nn.Conv2D(
|
|
in_channels=in_channels[3],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.p5_conv = nn.Conv2D(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.p4_conv = nn.Conv2D(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.p3_conv = nn.Conv2D(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.p2_conv = nn.Conv2D(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
bias_attr=False)
|
|
self.fuse_conv = nn.Conv2D(
|
|
in_channels=self.out_channels * 4,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False)
|
|
|
|
def forward(self, x):
|
|
c2, c3, c4, c5 = x
|
|
|
|
in5 = self.in5_conv(c5)
|
|
in4 = self.in4_conv(c4)
|
|
in3 = self.in3_conv(c3)
|
|
in2 = self.in2_conv(c2)
|
|
|
|
out4 = in4 + F.upsample(
|
|
in5, size=in4.shape[2:4], mode="nearest", align_mode=1) # 1/16
|
|
out3 = in3 + F.upsample(
|
|
out4, size=in3.shape[2:4], mode="nearest", align_mode=1) # 1/8
|
|
out2 = in2 + F.upsample(
|
|
out3, size=in2.shape[2:4], mode="nearest", align_mode=1) # 1/4
|
|
|
|
p4 = F.upsample(out4, size=in5.shape[2:4], mode="nearest", align_mode=1)
|
|
p3 = F.upsample(out3, size=in5.shape[2:4], mode="nearest", align_mode=1)
|
|
p2 = F.upsample(out2, size=in5.shape[2:4], mode="nearest", align_mode=1)
|
|
fuse = paddle.concat([in5, p4, p3, p2], axis=1)
|
|
fuse_conv = self.fuse_conv(fuse) * 0.005
|
|
return [c5 + fuse_conv]
|