PaddleOCR/doc/doc_ch/algorithm_overview.md

3.7 KiB
Raw Blame History

算法介绍

本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表以及每个算法在英文公开数据集上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考PP-OCR v2.0 系列模型下载

1.文本检测算法

PaddleOCR开源的文本检测算法列表

在ICDAR2015文本检测公开数据集上算法效果如下

模型 骨干网络 precision recall Hmean 下载链接
EAST ResNet50_vd 88.18% 85.51% 86.82% 下载链接 (coming soon)
EAST MobileNetV3 81.67% 79.83% 80.74% [下载链接 (coming soon)](coming soon)
DB ResNet50_vd 83.79% 80.65% 82.19% 下载链接
DB MobileNetV3 75.92% 73.18% 74.53% 下载链接
SAST ResNet50_vd 92.18% 82.96% 87.33% 下载链接 (coming soon)

在Total-text文本检测公开数据集上算法效果如下

模型 骨干网络 precision recall Hmean 下载链接
SAST ResNet50_vd 88.74% 79.80% 84.03% 下载链接 (coming soon)

说明: SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载百度云地址 (提取码: 2bpi)

PaddleOCR文本检测算法的训练和使用请参考文档教程中模型训练/评估中的文本检测部分

2.文本识别算法

PaddleOCR基于动态图开源的文本识别算法列表

参考DTRB文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下

模型 骨干网络 Avg Accuracy 模型存储命名 下载链接
Rosetta MobileNetV3 78.05% rec_mv3_none_none_ctc 下载链接
Rosetta Resnet34_vd 80.9% rec_r34_vd_none_none_ctc 下载链接
CRNN MobileNetV3 79.97% rec_mv3_none_bilstm_ctc 下载链接
CRNN Resnet34_vd 82.76% rec_r34_vd_none_bilstm_ctc 下载链接
STAR-Net MobileNetV3 81.56% rec_mv3_tps_bilstm_ctc 下载链接 (coming soon )
STAR-Net Resnet34_vd 83.93% rec_r34_vd_tps_bilstm_ctc 下载链接 (coming soon )

PaddleOCR文本识别算法的训练和使用请参考文档教程中模型训练/评估中的文本识别部分