60 lines
3.7 KiB
Markdown
60 lines
3.7 KiB
Markdown
<a name="算法介绍"></a>
|
||
## 算法介绍
|
||
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)。
|
||
|
||
- [1.文本检测算法](#文本检测算法)
|
||
- [2.文本识别算法](#文本识别算法)
|
||
|
||
<a name="文本检测算法"></a>
|
||
### 1.文本检测算法
|
||
|
||
PaddleOCR开源的文本检测算法列表:
|
||
- [x] DB([paper]( https://arxiv.org/abs/1911.08947) )(ppocr推荐)
|
||
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
|
||
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))
|
||
|
||
在ICDAR2015文本检测公开数据集上,算法效果如下:
|
||
|
||
|模型|骨干网络|precision|recall|Hmean|下载链接|
|
||
| --- | --- | --- | --- | --- | --- |
|
||
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接 (coming soon)](link)|
|
||
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接 (coming soon)](coming soon)|
|
||
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
||
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
||
|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[下载链接 (coming soon)](link)|
|
||
|
||
在Total-text文本检测公开数据集上,算法效果如下:
|
||
|
||
|模型|骨干网络|precision|recall|Hmean|下载链接|
|
||
| --- | --- | --- | --- | --- | --- |
|
||
|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[下载链接 (coming soon)](link)|
|
||
|
||
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
|
||
|
||
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。
|
||
|
||
|
||
<a name="文本识别算法"></a>
|
||
### 2.文本识别算法
|
||
|
||
PaddleOCR基于动态图开源的文本识别算法列表:
|
||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717) )(ppocr推荐)
|
||
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
|
||
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
|
||
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1)) coming soon
|
||
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294)) coming soon
|
||
|
||
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||
|
||
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
||
| --- | --- | --- | --- | --- |
|
||
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|
||
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|
||
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接 (coming soon )]()|
|
||
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接 (coming soon )]()|
|
||
|
||
|
||
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
|