106 lines
4.0 KiB
Python
106 lines
4.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle_serving_client import Client
|
|
from paddle_serving_app.reader import OCRReader
|
|
import cv2
|
|
import sys
|
|
import numpy as np
|
|
import os
|
|
from paddle_serving_client import Client
|
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
|
if sys.argv[1] == 'gpu':
|
|
from paddle_serving_server_gpu.web_service import WebService
|
|
elif sys.argv[1] == 'cpu':
|
|
from paddle_serving_server.web_service import WebService
|
|
import time
|
|
import re
|
|
import base64
|
|
|
|
|
|
class OCRService(WebService):
|
|
def init_det_client(self, det_port, det_client_config):
|
|
self.det_preprocess = Sequential([
|
|
ResizeByFactor(32, 960), Div(255),
|
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
|
(2, 0, 1))
|
|
])
|
|
self.det_client = Client()
|
|
self.det_client.load_client_config(det_client_config)
|
|
self.det_client.connect(["127.0.0.1:{}".format(det_port)])
|
|
self.ocr_reader = OCRReader()
|
|
|
|
def preprocess(self, feed=[], fetch=[]):
|
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
ori_h, ori_w, _ = im.shape
|
|
det_img = self.det_preprocess(im)
|
|
det_out = self.det_client.predict(
|
|
feed={"image": det_img}, fetch=["concat_1.tmp_0"])
|
|
_, new_h, new_w = det_img.shape
|
|
filter_func = FilterBoxes(10, 10)
|
|
post_func = DBPostProcess({
|
|
"thresh": 0.3,
|
|
"box_thresh": 0.5,
|
|
"max_candidates": 1000,
|
|
"unclip_ratio": 1.5,
|
|
"min_size": 3
|
|
})
|
|
sorted_boxes = SortedBoxes()
|
|
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
|
|
dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
|
|
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
|
|
dt_boxes = sorted_boxes(dt_boxes)
|
|
get_rotate_crop_image = GetRotateCropImage()
|
|
feed_list = []
|
|
img_list = []
|
|
max_wh_ratio = 0
|
|
for i, dtbox in enumerate(dt_boxes):
|
|
boximg = get_rotate_crop_image(im, dt_boxes[i])
|
|
img_list.append(boximg)
|
|
h, w = boximg.shape[0:2]
|
|
wh_ratio = w * 1.0 / h
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
for img in img_list:
|
|
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
|
|
feed = {"image": norm_img}
|
|
feed_list.append(feed)
|
|
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
|
return feed_list, fetch
|
|
|
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
|
rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
|
|
res_lst = []
|
|
for res in rec_res:
|
|
res_lst.append(res[0])
|
|
res = {"res": res_lst}
|
|
return res
|
|
|
|
|
|
ocr_service = OCRService(name="ocr")
|
|
ocr_service.load_model_config("ocr_rec_model")
|
|
if sys.argv[1] == 'gpu':
|
|
ocr_service.set_gpus("0")
|
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
|
elif sys.argv[1] == 'cpu':
|
|
ocr_service.prepare_server(workdir="workdir", port=9292)
|
|
ocr_service.init_det_client(
|
|
det_port=9293,
|
|
det_client_config="ocr_det_client/serving_client_conf.prototxt")
|
|
ocr_service.run_rpc_service()
|
|
ocr_service.run_web_service()
|