233 lines
8.7 KiB
Python
233 lines
8.7 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import os
|
|
import time
|
|
import logging
|
|
|
|
import paddle
|
|
import paddle.inference as paddle_infer
|
|
|
|
from pathlib import Path
|
|
|
|
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
class PaddleInferBenchmark(object):
|
|
def __init__(self,
|
|
config,
|
|
model_info: dict={},
|
|
data_info: dict={},
|
|
perf_info: dict={},
|
|
resource_info: dict={},
|
|
save_log_path: str="",
|
|
**kwargs):
|
|
"""
|
|
Construct PaddleInferBenchmark Class to format logs.
|
|
args:
|
|
config(paddle.inference.Config): paddle inference config
|
|
model_info(dict): basic model info
|
|
{'model_name': 'resnet50'
|
|
'precision': 'fp32'}
|
|
data_info(dict): input data info
|
|
{'batch_size': 1
|
|
'shape': '3,224,224'
|
|
'data_num': 1000}
|
|
perf_info(dict): performance result
|
|
{'preprocess_time_s': 1.0
|
|
'inference_time_s': 2.0
|
|
'postprocess_time_s': 1.0
|
|
'total_time_s': 4.0}
|
|
resource_info(dict):
|
|
cpu and gpu resources
|
|
{'cpu_rss': 100
|
|
'gpu_rss': 100
|
|
'gpu_util': 60}
|
|
"""
|
|
# PaddleInferBenchmark Log Version
|
|
self.log_version = 1.0
|
|
|
|
# Paddle Version
|
|
self.paddle_version = paddle.__version__
|
|
self.paddle_commit = paddle.__git_commit__
|
|
paddle_infer_info = paddle_infer.get_version()
|
|
self.paddle_branch = paddle_infer_info.strip().split(': ')[-1]
|
|
|
|
# model info
|
|
self.model_info = model_info
|
|
|
|
# data info
|
|
self.data_info = data_info
|
|
|
|
# perf info
|
|
self.perf_info = perf_info
|
|
|
|
try:
|
|
self.model_name = model_info['model_name']
|
|
self.precision = model_info['precision']
|
|
|
|
self.batch_size = data_info['batch_size']
|
|
self.shape = data_info['shape']
|
|
self.data_num = data_info['data_num']
|
|
|
|
self.preprocess_time_s = round(perf_info['preprocess_time_s'], 4)
|
|
self.inference_time_s = round(perf_info['inference_time_s'], 4)
|
|
self.postprocess_time_s = round(perf_info['postprocess_time_s'], 4)
|
|
self.total_time_s = round(perf_info['total_time_s'], 4)
|
|
except:
|
|
self.print_help()
|
|
raise ValueError(
|
|
"Set argument wrong, please check input argument and its type")
|
|
|
|
# conf info
|
|
self.config_status = self.parse_config(config)
|
|
self.save_log_path = save_log_path
|
|
# mem info
|
|
if isinstance(resource_info, dict):
|
|
self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0))
|
|
self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0))
|
|
self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
|
|
else:
|
|
self.cpu_rss_mb = 0
|
|
self.gpu_rss_mb = 0
|
|
self.gpu_util = 0
|
|
|
|
# init benchmark logger
|
|
self.benchmark_logger()
|
|
|
|
def benchmark_logger(self):
|
|
"""
|
|
benchmark logger
|
|
"""
|
|
# Init logger
|
|
FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
log_output = f"{self.save_log_path}/{self.model_name}.log"
|
|
Path(f"{self.save_log_path}").mkdir(parents=True, exist_ok=True)
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format=FORMAT,
|
|
handlers=[
|
|
logging.FileHandler(
|
|
filename=log_output, mode='w'),
|
|
logging.StreamHandler(),
|
|
])
|
|
self.logger = logging.getLogger(__name__)
|
|
self.logger.info(
|
|
f"Paddle Inference benchmark log will be saved to {log_output}")
|
|
|
|
def parse_config(self, config) -> dict:
|
|
"""
|
|
parse paddle predictor config
|
|
args:
|
|
config(paddle.inference.Config): paddle inference config
|
|
return:
|
|
config_status(dict): dict style config info
|
|
"""
|
|
config_status = {}
|
|
config_status['runtime_device'] = "gpu" if config.use_gpu() else "cpu"
|
|
config_status['ir_optim'] = config.ir_optim()
|
|
config_status['enable_tensorrt'] = config.tensorrt_engine_enabled()
|
|
config_status['precision'] = self.precision
|
|
config_status['enable_mkldnn'] = config.mkldnn_enabled()
|
|
config_status[
|
|
'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads(
|
|
)
|
|
return config_status
|
|
|
|
def report(self, identifier=None):
|
|
"""
|
|
print log report
|
|
args:
|
|
identifier(string): identify log
|
|
"""
|
|
if identifier:
|
|
identifier = f"[{identifier}]"
|
|
else:
|
|
identifier = ""
|
|
|
|
self.logger.info("\n")
|
|
self.logger.info(
|
|
"---------------------- Paddle info ----------------------")
|
|
self.logger.info(f"{identifier} paddle_version: {self.paddle_version}")
|
|
self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}")
|
|
self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}")
|
|
self.logger.info(f"{identifier} log_api_version: {self.log_version}")
|
|
self.logger.info(
|
|
"----------------------- Conf info -----------------------")
|
|
self.logger.info(
|
|
f"{identifier} runtime_device: {self.config_status['runtime_device']}"
|
|
)
|
|
self.logger.info(
|
|
f"{identifier} ir_optim: {self.config_status['ir_optim']}")
|
|
self.logger.info(f"{identifier} enable_memory_optim: {True}")
|
|
self.logger.info(
|
|
f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}"
|
|
)
|
|
self.logger.info(
|
|
f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}")
|
|
self.logger.info(
|
|
f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}"
|
|
)
|
|
self.logger.info(
|
|
"----------------------- Model info ----------------------")
|
|
self.logger.info(f"{identifier} model_name: {self.model_name}")
|
|
self.logger.info(f"{identifier} precision: {self.precision}")
|
|
self.logger.info(
|
|
"----------------------- Data info -----------------------")
|
|
self.logger.info(f"{identifier} batch_size: {self.batch_size}")
|
|
self.logger.info(f"{identifier} input_shape: {self.shape}")
|
|
self.logger.info(f"{identifier} data_num: {self.data_num}")
|
|
self.logger.info(
|
|
"----------------------- Perf info -----------------------")
|
|
self.logger.info(
|
|
f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%"
|
|
)
|
|
self.logger.info(
|
|
f"{identifier} total time spent(s): {self.total_time_s}")
|
|
self.logger.info(
|
|
f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, inference_time(ms): {round(self.inference_time_s*1000, 1)}, postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}"
|
|
)
|
|
|
|
def print_help(self):
|
|
"""
|
|
print function help
|
|
"""
|
|
print("""Usage:
|
|
==== Print inference benchmark logs. ====
|
|
config = paddle.inference.Config()
|
|
model_info = {'model_name': 'resnet50'
|
|
'precision': 'fp32'}
|
|
data_info = {'batch_size': 1
|
|
'shape': '3,224,224'
|
|
'data_num': 1000}
|
|
perf_info = {'preprocess_time_s': 1.0
|
|
'inference_time_s': 2.0
|
|
'postprocess_time_s': 1.0
|
|
'total_time_s': 4.0}
|
|
resource_info = {'cpu_rss_mb': 100
|
|
'gpu_rss_mb': 100
|
|
'gpu_util': 60}
|
|
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
|
|
log('Test')
|
|
""")
|
|
|
|
def __call__(self, identifier=None):
|
|
"""
|
|
__call__
|
|
args:
|
|
identifier(string): identify log
|
|
"""
|
|
self.report(identifier)
|