PaddleOCR/doc/doc_ch/datasets.md

83 lines
4.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 通用中英文OCR数据集
这里整理了常用中文数据集,持续更新中,欢迎各位小伙伴贡献数据集~
- [ICDAR2019-LSVT](#ICDAR2019-LSVT)
- [ICDAR2017-RCTW-17](#ICDAR2017-RCTW-17)
- [中文街景文字识别](#中文街景文字识别)
- [中文文档文字识别](#中文文档文字识别)
- [ICDAR2019-ArT](#ICDAR2019-ArT)
除了开源数据,用户还可使用合成工具自行合成,可参考[数据合成工具](./data_synthesis.md)
如果需要标注自己的数据,可参考[数据标注工具](./data_annotation.md)。
<a name="ICDAR2019-LSVT"></a>
#### 1、ICDAR2019-LSVT
- **数据来源**https://ai.baidu.com/broad/introduction?dataset=lsvt
- **数据简介** 共45w中文街景图像包含5w2w测试+3w训练全标注数据文本坐标+文本内容40w弱标注数据仅文本内容如下图所示
![](../datasets/LSVT_1.jpg)
(a) 全标注数据
![](../datasets/LSVT_2.jpg)
(b) 弱标注数据
- **下载地址**https://ai.baidu.com/broad/download?dataset=lsvt
- **说明**其中test数据集的label目前没有开源如要评估结果可以去官网提交https://rrc.cvc.uab.es/?ch=16
<a name="ICDAR2017-RCTW-17"></a>
#### 2、ICDAR2017-RCTW-17
- **数据来源**https://rctw.vlrlab.net/
- **数据简介**共包含12,000+图像,大部分图片是通过手机摄像头在野外采集的。有些是截图。这些图片展示了各种各样的场景,包括街景、海报、菜单、室内场景和手机应用程序的截图。
![](../datasets/rctw.jpg)
- **下载地址**https://rctw.vlrlab.net/dataset/
<a name="中文街景文字识别"></a>
#### 3、中文街景文字识别
- **数据来源**https://aistudio.baidu.com/aistudio/competition/detail/8
- **数据简介**ICDAR2019-LSVT行识别任务共包括29万张图片其中21万张图片作为训练集带标注8万张作为测试集无标注。数据集采自中国街景并由街景图片中的文字行区域例如店铺标牌、地标等等截取出来而形成。所有图像都经过一些预处理将文字区域利用仿射变化等比映射为一张高为48像素的图片如图所示
![](../datasets/ch_street_rec_1.png)
(a) 标注:魅派集成吊顶
![](../datasets/ch_street_rec_2.png)
(b) 标注:母婴用品连锁
- **下载地址**
https://aistudio.baidu.com/aistudio/datasetdetail/8429
<a name="中文文档文字识别"></a>
#### 4、中文文档文字识别
- **数据来源**https://github.com/YCG09/chinese_ocr
- **数据简介**
- 共约364万张图片按照99:1划分成训练集和验证集。
- 数据利用中文语料库(新闻 + 文言文),通过字体、大小、灰度、模糊、透视、拉伸等变化随机生成
- 包含汉字、英文字母、数字和标点共5990个字符字符集合https://github.com/YCG09/chinese_ocr/blob/master/train/char_std_5990.txt
- 每个样本固定10个字符字符随机截取自语料库中的句子
- 图片分辨率统一为280x32
![](../datasets/ch_doc1.jpg)
![](../datasets/ch_doc2.jpg)
![](../datasets/ch_doc3.jpg)
- **下载地址**https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (密码lu7m)
<a name="ICDAR2019-ArT"></a>
#### 5、ICDAR2019-ArT
- **数据来源**https://ai.baidu.com/broad/introduction?dataset=art
- **数据简介**共包含10,166张图像训练集5603图测试集4563图。由Total-Text、SCUT-CTW1500、Baidu Curved Scene Text (ICDAR2019-LSVT部分弯曲数据) 三部分组成,包含水平、多方向和弯曲等多种形状的文本。
![](../datasets/ArT.jpg)
- **下载地址**https://ai.baidu.com/broad/download?dataset=art
## 参考文献
**ICDAR 2019-LSVT Challenge**
```
@article{sun2019icdar,
title={ICDAR 2019 Competition on Large-scale Street View Text with Partial Labeling--RRC-LSVT},
author={Sun, Yipeng and Ni, Zihan and Chng, Chee-Kheng and Liu, Yuliang and Luo, Canjie and Ng, Chun Chet and Han, Junyu and Ding, Errui and Liu, Jingtuo and Karatzas, Dimosthenis and others},
journal={arXiv preprint arXiv:1909.07741},
year={2019}
}
```
**ICDAR 2019-ArT Challenge**
```
@article{chng2019icdar2019,
title={ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text (RRC-ArT)},
author={Chng, Chee-Kheng and Liu, Yuliang and Sun, Yipeng and Ng, Chun Chet and Luo, Canjie and Ni, Zihan and Fang, ChuanMing and Zhang, Shuaitao and Han, Junyu and Ding, Errui and others},
journal={arXiv preprint arXiv:1909.07145},
year={2019}
}
```