PaddleOCR/StyleText/engine/predictors.py

117 lines
4.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import math
import paddle
from arch import style_text_rec
from utils.sys_funcs import check_gpu
from utils.logging import get_logger
class StyleTextRecPredictor(object):
def __init__(self, config):
algorithm = config['Predictor']['algorithm']
assert algorithm in ["StyleTextRec"
], "Generator {} not supported.".format(algorithm)
use_gpu = config["Global"]['use_gpu']
check_gpu(use_gpu)
paddle.set_device('gpu' if use_gpu else 'cpu')
self.logger = get_logger()
self.generator = getattr(style_text_rec, algorithm)(config)
self.height = config["Global"]["image_height"]
self.width = config["Global"]["image_width"]
self.scale = config["Predictor"]["scale"]
self.mean = config["Predictor"]["mean"]
self.std = config["Predictor"]["std"]
self.expand_result = config["Predictor"]["expand_result"]
def predict(self, style_input, text_input):
style_input = self.rep_style_input(style_input, text_input)
tensor_style_input = self.preprocess(style_input)
tensor_text_input = self.preprocess(text_input)
style_text_result = self.generator.forward(tensor_style_input,
tensor_text_input)
fake_fusion = self.postprocess(style_text_result["fake_fusion"])
fake_text = self.postprocess(style_text_result["fake_text"])
fake_sk = self.postprocess(style_text_result["fake_sk"])
fake_bg = self.postprocess(style_text_result["fake_bg"])
bbox = self.get_text_boundary(fake_text)
if bbox:
left, right, top, bottom = bbox
fake_fusion = fake_fusion[top:bottom, left:right, :]
fake_text = fake_text[top:bottom, left:right, :]
fake_sk = fake_sk[top:bottom, left:right, :]
fake_bg = fake_bg[top:bottom, left:right, :]
# fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text)
return {
"fake_fusion": fake_fusion,
"fake_text": fake_text,
"fake_sk": fake_sk,
"fake_bg": fake_bg,
}
def preprocess(self, img):
img = (img.astype('float32') * self.scale - self.mean) / self.std
img_height, img_width, channel = img.shape
assert channel == 3, "Please use an rgb image."
ratio = img_width / float(img_height)
if math.ceil(self.height * ratio) > self.width:
resized_w = self.width
else:
resized_w = int(math.ceil(self.height * ratio))
img = cv2.resize(img, (resized_w, self.height))
new_img = np.zeros([self.height, self.width, 3]).astype('float32')
new_img[:, 0:resized_w, :] = img
img = new_img.transpose((2, 0, 1))
img = img[np.newaxis, :, :, :]
return paddle.to_tensor(img)
def postprocess(self, tensor):
img = tensor.numpy()[0]
img = img.transpose((1, 2, 0))
img = (img * self.std + self.mean) / self.scale
img = np.maximum(img, 0.0)
img = np.minimum(img, 255.0)
img = img.astype('uint8')
return img
def rep_style_input(self, style_input, text_input):
rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) /
(style_input.shape[1] / style_input.shape[0])) + 1
style_input = np.tile(style_input, reps=[1, rep_num, 1])
max_width = int(self.width / self.height * style_input.shape[0])
style_input = style_input[:, :max_width, :]
return style_input
def get_text_boundary(self, text_img):
img_height = text_img.shape[0]
img_width = text_img.shape[1]
bounder = 3
text_canny_img = cv2.Canny(text_img, 10, 20)
edge_num_h = text_canny_img.sum(axis=0)
no_zero_list_h = np.where(edge_num_h > 0)[0]
edge_num_w = text_canny_img.sum(axis=1)
no_zero_list_w = np.where(edge_num_w > 0)[0]
if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0:
return None
left = max(no_zero_list_h[0] - bounder, 0)
right = min(no_zero_list_h[-1] + bounder, img_width)
top = max(no_zero_list_w[0] - bounder, 0)
bottom = min(no_zero_list_w[-1] + bounder, img_height)
return [left, right, top, bottom]