PaddleOCR/deploy/pdserving/README_CN.md

161 lines
6.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# PPOCR 服务化部署
([English](./README.md)|简体中文)
PaddleOCR提供2种服务部署方式
- 基于PaddleHub Serving的部署代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md)
- 基于PaddleServing的部署代码路径为"`./deploy/pdserving`",按照本教程使用。
# 基于PaddleServing的服务部署
本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PPOCR
动态图模型的pipeline在线服务。
相比较于hubserving部署PaddleServing具备以下优点
- 支持客户端和服务端之间高并发和高效通信
- 支持 工业级的服务能力 例如模型管理在线加载在线A/B测试等
- 支持 多种编程语言 开发客户端例如C++, Python和Java
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。
## 目录
- [环境准备](#环境准备)
- [模型转换](#模型转换)
- [Paddle Serving pipeline部署](#部署)
- [FAQ](#FAQ)
<a name="环境准备"></a>
## 环境准备
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境参考[链接](../../doc/doc_ch/installation.md)
- 准备PaddleServing的运行环境步骤如下
1. 安装serving用于启动服务
```
pip3 install paddle-serving-server==0.5.0 # for CPU
pip3 install paddle-serving-server-gpu==0.5.0 # for GPU
# 其他GPU环境需要确认环境再选择执行如下命令
pip3 install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
pip3 install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
pip3 install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
pip3 install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
```
2. 安装client用于向服务发送请求
```
pip3 install paddle-serving-client==0.5.0 # for CPU
pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
```
3. 安装serving-app
```
pip3 install paddle-serving-app==0.3.0
```
**note:** 安装0.3.0版本的serving-app后为了能加载动态图模型需要修改serving_app的源码具体为
```
# 找到paddle_serving_app的安装目录找到并编辑local_predict.py文件
vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
# 将local_predict.py 的第85行 config = AnalysisConfig(model_path) 替换为:
if os.path.exists(os.path.join(model_path, "__params__")):
config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
else:
config = AnalysisConfig(model_path)
```
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。
<a name="模型转换"></a>
## 模型转换
使用PaddleServing做服务化部署时需要将保存的inference模型转换为serving易于部署的模型。
首先下载PPOCR的[inference模型](https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15)
```
# 下载并解压 OCR 文本检测模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar
# 下载并解压 OCR 文本识别模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar
```
接下来用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。
```
# 转换检测模型
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_det_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./ppocr_det_server_2.0_serving/ \
--serving_client ./ppocr_det_server_2.0_client/
# 转换识别模型
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_rec_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./ppocr_rec_server_2.0_serving/ \
--serving_client ./ppocr_rec_server_2.0_client/
```
检测模型转换完成后,会在当前文件夹多出`ppocr_det_server_2.0_serving` 和`ppocr_det_server_2.0_client`的文件夹,具备如下格式:
```
|- ppocr_det_server_2.0_serving/
|- __model__
|- __params__
|- serving_server_conf.prototxt
|- serving_server_conf.stream.prototxt
|- ppocr_det_server_2.0_client
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
```
识别模型同理。
<a name="部署"></a>
## Paddle Serving pipeline部署
1. 下载PaddleOCR代码若已下载可跳过此步骤
```
git clone https://github.com/PaddlePaddle/PaddleOCR
# 进入到工作目录
cd PaddleOCR/deploy/pdserver/
```
pdserver目录包含启动pipeline服务和发送预测请求的代码包括
```
__init__.py
config.yml # 启动服务的配置文件
ocr_reader.py # OCR模型预处理和后处理的代码实现
pipeline_http_client.py # 发送pipeline预测请求的脚本
web_service.py # 启动pipeline服务端的脚本
```
2. 启动服务可运行如下命令:
```
# 启动服务运行日志保存在log.txt
python3 web_service.py &>log.txt &
```
成功启动服务后log.txt中会打印类似如下日志
![](./imgs/start_server.png)
3. 发送服务请求:
```
python3 pipeline_http_client.py
```
成功运行后模型预测的结果会打印在cmd窗口中结果示例为
![](./imgs/results.png)
<a name="FAQ"></a>
## FAQ
**Q1** 发送请求后没有结果返回或者提示输出解码报错
**A1** 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
```
unset https_proxy
unset http_proxy
```