PaddleOCR/tools/eval.py

83 lines
3.0 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import print_dict
import tools.program as program
def main():
global_config = config['Global']
# build dataloader
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
extra_input = config['Architecture']['algorithm'] in ["SRN", "SAR"]
if "model_type" in config['Architecture'].keys():
model_type = config['Architecture']['model_type']
else:
model_type = None
best_model_dict = load_dygraph_params(config, model, logger, None)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
logger.info('{}:{}'.format(k, v))
# build metric
eval_class = build_metric(config['Metric'])
# start eval
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, extra_input)
logger.info('metric eval ***************')
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main()